Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model
- URL: http://arxiv.org/abs/2408.08282v1
- Date: Thu, 15 Aug 2024 17:33:32 GMT
- Title: Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model
- Authors: Jin Wang, Arturo Laurenzi, Nikos Tsagarakis,
- Abstract summary: Large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information.
We propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions.
- Score: 6.9268843428933025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling humanoid robots to perform autonomously loco-manipulation in unstructured environments is crucial and highly challenging for achieving embodied intelligence. This involves robots being able to plan their actions and behaviors in long-horizon tasks while using multi-modality to perceive deviations between task execution and high-level planning. Recently, large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information through robot control tasks, as well as the usability of analytical judgment and decision-making for multi-modal inputs. To leverage the power of LLMs towards humanoid loco-manipulation, we propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions, while observing and correcting failures that may occur during task execution. To systematically evaluate this framework in grounding LLMs, we created the robot 'action' and 'sensing' behavior library for task planning, and conducted mobile manipulation tasks and experiments in both simulated and real environments using the CENTAURO robot, and verified the effectiveness and application of this approach in robotic tasks with autonomous behavioral planning.
Related papers
- COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Grounding Language Models in Autonomous Loco-manipulation Tasks [3.8363685417355557]
We propose a novel framework that learns, selects, and plans behaviors based on tasks in different scenarios.
We leverage the planning and reasoning features of the large language model (LLM), constructing a hierarchical task graph.
Experiments in simulation and real-world using the CENTAURO robot show that the language model based planner can efficiently adapt to new loco-manipulation tasks.
arXiv Detail & Related papers (2024-09-02T15:27:48Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Logic programming for deliberative robotic task planning [2.610470075814367]
We present a survey on recent advances in the application of logic programming to the problem of task planning.
We analyze different planners and their suitability for specific robotic applications, based on expressivity in domain representation, computational efficiency and software implementation.
arXiv Detail & Related papers (2023-01-18T14:11:55Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z) - Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots [5.739787445246959]
We propose a novel planning method that can efficiently estimate the order and positions of the objects to be tidied up by learning the parameters of a probabilistic generative model.
The model allows a robot to learn the distributions of the co-occurrence probability of the objects and places to tidy up using the multimodal sensor information collected in a tidied environment.
We evaluate the effectiveness of the proposed method by an experimental simulation that reproduces the conditions of the Tidy Up Here task of the World Robot Summit 2018 international robotics competition.
arXiv Detail & Related papers (2020-02-10T11:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.