論文の概要: Convolutional Hierarchical Attention Network for Query-Focused Video
Summarization
- arxiv url: http://arxiv.org/abs/2002.03740v3
- Date: Sat, 15 Feb 2020 03:26:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 06:38:56.098104
- Title: Convolutional Hierarchical Attention Network for Query-Focused Video
Summarization
- Title(参考訳): 問合せ映像要約のための畳み込み階層型注意ネットワーク
- Authors: Shuwen Xiao, Zhou Zhao, Zijian Zhang, Xiaohui Yan, Min Yang
- Abstract要約: 本稿では、ユーザのクエリと長いビデオを入力として取り込む、クエリ中心のビデオ要約の課題に対処する。
本稿では,特徴符号化ネットワークとクエリ関連計算モジュールの2つの部分からなる畳み込み階層型注意ネットワーク(CHAN)を提案する。
符号化ネットワークでは,局所的な自己認識機構と問合せ対応のグローバルアテンション機構を備えた畳み込みネットワークを用いて,各ショットの視覚情報を学習する。
- 参考スコア(独自算出の注目度): 74.48782934264094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous approaches for video summarization mainly concentrate on finding the
most diverse and representative visual contents as video summary without
considering the user's preference. This paper addresses the task of
query-focused video summarization, which takes user's query and a long video as
inputs and aims to generate a query-focused video summary. In this paper, we
consider the task as a problem of computing similarity between video shots and
query. To this end, we propose a method, named Convolutional Hierarchical
Attention Network (CHAN), which consists of two parts: feature encoding network
and query-relevance computing module. In the encoding network, we employ a
convolutional network with local self-attention mechanism and query-aware
global attention mechanism to learns visual information of each shot. The
encoded features will be sent to query-relevance computing module to generate
queryfocused video summary. Extensive experiments on the benchmark dataset
demonstrate the competitive performance and show the effectiveness of our
approach.
- Abstract(参考訳): 従来のビデオ要約のアプローチは、ユーザの好みを考慮せずに、最も多様で代表的なビジュアルコンテンツをビデオ要約として見つけることに集中している。
本稿では、ユーザのクエリと長いビデオを入力として取り、クエリ中心のビデオ要約を生成するための、クエリ中心のビデオ要約の課題に対処する。
本稿では,映像と問合せの類似性を計算する問題として,この課題を考察する。
そこで本研究では,機能エンコーディングネットワークとクエリ関連コンピューティングモジュールの2つの部分からなる,畳み込み階層型注意ネットワーク(chan)という手法を提案する。
符号化ネットワークでは,局所的な自己認識機構と問合せ対応のグローバルアテンション機構を備えた畳み込みネットワークを用いて各ショットの視覚情報を学習する。
エンコードされた機能はクエリ関連コンピューティングモジュールに送信され、クエリ中心のビデオ要約を生成する。
ベンチマークデータセットの大規模な実験は、競争性能を示し、我々のアプローチの有効性を示す。
関連論文リスト
- Your Interest, Your Summaries: Query-Focused Long Video Summarization [0.6041235048439966]
本稿では,ユーザクエリとビデオ要約を密接に関連付けることを目的とした,クエリ中心のビデオ要約に対するアプローチを提案する。
本稿では,本課題のために設計された新しいアプローチであるFCSNA-QFVS(FCSNA-QFVS)を提案する。
論文 参考訳(メタデータ) (2024-10-17T23:37:58Z) - GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
本稿では,テキストとビデオ間の固有情報不均衡に対処するため,新しいデータ中心型アプローチであるGeneralized Query Expansion (GQE)を提案する。
ビデオをショートクリップにアダプティブに分割し、ゼロショットキャプションを採用することで、GQEはトレーニングデータセットを総合的なシーン記述で強化する。
GQEは、MSR-VTT、MSVD、SMDC、VATEXなど、いくつかのベンチマークで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-14T01:24:09Z) - Conditional Modeling Based Automatic Video Summarization [70.96973928590958]
ビデオ要約の目的は、全体を伝えるのに必要な重要な情報を保持しながら、自動的にビデオを短縮することである。
映像要約法は視覚的連続性や多様性などの視覚的要因に依存しており、ビデオの内容を完全に理解するには不十分である。
映像要約への新たなアプローチは、人間が地上の真実のビデオ要約を作成する方法から得られる知見に基づいて提案されている。
論文 参考訳(メタデータ) (2023-11-20T20:24:45Z) - MHSCNet: A Multimodal Hierarchical Shot-aware Convolutional Network for
Video Summarization [61.69587867308656]
本稿では,MHSCNetと呼ばれるマルチモーダル階層型ショット・アウェア・畳み込みネットワークを提案する。
学習したショット認識表現に基づいて、MHSCNetは、ビデオのローカルおよびグローバルビューにおけるフレームレベルの重要度スコアを予測することができる。
論文 参考訳(メタデータ) (2022-04-18T14:53:33Z) - Unsupervised Video Summarization with a Convolutional Attentive
Adversarial Network [32.90753137435032]
我々は,教師なしの方法で深層要約器を構築するために,畳み込み型敵ネットワーク(CAAN)を提案する。
具体的には、ビデオのグローバルな表現を抽出する完全畳み込みシーケンスネットワークと、正規化された重要度スコアを出力する注目ベースのネットワークを用いる。
その結果,提案手法の他の非教師なし手法に対する優位性を示した。
論文 参考訳(メタデータ) (2021-05-24T07:24:39Z) - DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video
Summarization [127.16984421969529]
DeepQAMVSと呼ばれるマルチビデオ要約のための新しいQuery-Aware階層型ポインタネットワークを紹介します。
DeepQAMVSは強化学習で訓練され、代表性、多様性、クエリ適応性、時間的コヒーレンスを捉えた報酬を取り入れている。
MVS1Kデータセットで最新の結果を達成し、入力されたビデオフレームの数と線形に推論時間をスケーリングします。
論文 参考訳(メタデータ) (2021-05-13T17:33:26Z) - Fine-grained Iterative Attention Network for TemporalLanguage
Localization in Videos [63.94898634140878]
ビデオ中の時間的言語ローカライゼーションは、与えられた文クエリに基づいて、ビデオセグメントの1つを未トリミングビデオにグラウンドすることを目的としている。
本稿では,2つのクエリ・ビデオ・インフォーム抽出のための反復的注意モジュールからなる細粒度反復注意ネットワーク(FIAN)を提案する。
本稿では,Ac-tivityNet Captions,TACoS,Charades-STAの3つのベンチマークで提案手法を評価した。
論文 参考訳(メタデータ) (2020-08-06T04:09:03Z) - Query-controllable Video Summarization [16.54586273670312]
本稿では,テキストベースの問合せを入力とし,それに対応する映像要約を生成する手法を提案する。
提案手法は,映像要約制御器,映像要約生成器,映像要約出力モジュールから構成される。
論文 参考訳(メタデータ) (2020-04-07T19:35:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。