Deriving Emotions and Sentiments from Visual Content: A Disaster
Analysis Use Case
- URL: http://arxiv.org/abs/2002.03773v1
- Date: Mon, 3 Feb 2020 08:48:52 GMT
- Title: Deriving Emotions and Sentiments from Visual Content: A Disaster
Analysis Use Case
- Authors: Kashif Ahmad, Syed Zohaib, Nicola Conci and Ala Al-Fuqaha
- Abstract summary: Social networks and users' tendency towards sharing their feelings in text, visual and audio content has opened new opportunities and challenges in sentiment analysis.
This article introduces visual sentiment analysis and contrasts it with textual sentiment analysis with emphasis on the opportunities and challenges in this nascent research area.
We propose a deep visual sentiment analyzer for disaster-related images as a use-case, covering different aspects of visual sentiment analysis starting from data collection, annotation, model selection, implementation and evaluations.
- Score: 10.161936647987515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment analysis aims to extract and express a person's perception,
opinions and emotions towards an entity, object, product and a service,
enabling businesses to obtain feedback from the consumers. The increasing
popularity of the social networks and users' tendency towards sharing their
feelings, expressions and opinions in text, visual and audio content has opened
new opportunities and challenges in sentiment analysis. While sentiment
analysis of text streams has been widely explored in the literature, sentiment
analysis of images and videos is relatively new. This article introduces visual
sentiment analysis and contrasts it with textual sentiment analysis with
emphasis on the opportunities and challenges in this nascent research area. We
also propose a deep visual sentiment analyzer for disaster-related images as a
use-case, covering different aspects of visual sentiment analysis starting from
data collection, annotation, model selection, implementation and evaluations.
We believe such rigorous analysis will provide a baseline for future research
in the domain.
Related papers
- A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
Sentiment analysis (SA) is an emerging field in text mining.
It is the process of computationally identifying and categorizing opinions expressed in a piece of text over different social media platforms.
arXiv Detail & Related papers (2023-11-19T06:29:41Z) - Holistic Visual-Textual Sentiment Analysis with Prior Models [64.48229009396186]
We propose a holistic method that achieves robust visual-textual sentiment analysis.
The proposed method consists of four parts: (1) a visual-textual branch to learn features directly from data for sentiment analysis, (2) a visual expert branch with a set of pre-trained "expert" encoders to extract selected semantic visual features, (3) a CLIP branch to implicitly model visual-textual correspondence, and (4) a multimodal feature fusion network based on BERT to fuse multimodal features and make sentiment predictions.
arXiv Detail & Related papers (2022-11-23T14:40:51Z) - Affection: Learning Affective Explanations for Real-World Visual Data [50.28825017427716]
We introduce and share with the research community a large-scale dataset that contains emotional reactions and free-form textual explanations for 85,007 publicly available images.
We show that there is significant common ground to capture potentially plausible emotional responses with a large support in the subject population.
Our work paves the way for richer, more human-centric, and emotionally-aware image analysis systems.
arXiv Detail & Related papers (2022-10-04T22:44:17Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
We propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images.
To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features.
We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism.
arXiv Detail & Related papers (2021-10-24T02:41:41Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
We will comprehensively review the development of affective image content analysis (AICA) in the recent two decades.
We will focus on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence.
We discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
arXiv Detail & Related papers (2021-06-30T15:20:56Z) - Computational Emotion Analysis From Images: Recent Advances and Future
Directions [79.05003998727103]
In this chapter, we aim to introduce image emotion analysis (IEA) from a computational perspective.
We begin with commonly used emotion representation models from psychology.
We then define the key computational problems that the researchers have been trying to solve.
arXiv Detail & Related papers (2021-03-19T13:33:34Z) - Visual Sentiment Analysis from Disaster Images in Social Media [11.075683976162766]
This article focuses on visual sentiment analysis in a societal important domain, namely disaster analysis in social media.
We propose a deep visual sentiment analyzer for disaster related images, covering different aspects of visual sentiment analysis.
We believe the proposed system can contribute toward more livable communities by helping different stakeholders.
arXiv Detail & Related papers (2020-09-04T11:29:52Z) - Sentiment Analysis on Customer Responses [0.0]
We present a customer feedback reviews on product, where we utilize opinion mining, text mining and sentiments.
This research paper provides you with sentimental analysis of various smart phone opinions on smart phones dividing them Positive, Negative and Neutral Behaviour.
arXiv Detail & Related papers (2020-07-05T04:50:40Z) - Sentiment Analysis: Automatically Detecting Valence, Emotions, and Other
Affectual States from Text [31.87319293259599]
This article presents a sweeping overview of sentiment analysis research.
It includes the origins of the field, the rich landscape of tasks, challenges, a survey of the methods and resources used, and applications.
We discuss how, without careful fore-thought, sentiment analysis has the potential for harmful outcomes.
arXiv Detail & Related papers (2020-05-25T01:37:31Z) - Survey on Visual Sentiment Analysis [87.20223213370004]
This paper reviews pertinent publications and tries to present an exhaustive overview of the field of Visual Sentiment Analysis.
The paper also describes principles of design of general Visual Sentiment Analysis systems from three main points of view.
A formalization of the problem is discussed, considering different levels of granularity, as well as the components that can affect the sentiment toward an image in different ways.
arXiv Detail & Related papers (2020-04-24T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.