Computational Emotion Analysis From Images: Recent Advances and Future
Directions
- URL: http://arxiv.org/abs/2103.10798v1
- Date: Fri, 19 Mar 2021 13:33:34 GMT
- Title: Computational Emotion Analysis From Images: Recent Advances and Future
Directions
- Authors: Sicheng Zhao, Quanwei Huang, Youbao Tang, Xingxu Yao, Jufeng Yang,
Guiguang Ding, Bj\"orn W. Schuller
- Abstract summary: In this chapter, we aim to introduce image emotion analysis (IEA) from a computational perspective.
We begin with commonly used emotion representation models from psychology.
We then define the key computational problems that the researchers have been trying to solve.
- Score: 79.05003998727103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotions are usually evoked in humans by images. Recently, extensive research
efforts have been dedicated to understanding the emotions of images. In this
chapter, we aim to introduce image emotion analysis (IEA) from a computational
perspective with the focus on summarizing recent advances and suggesting future
directions. We begin with commonly used emotion representation models from
psychology. We then define the key computational problems that the researchers
have been trying to solve and provide supervised frameworks that are generally
used for different IEA tasks. After the introduction of major challenges in
IEA, we present some representative methods on emotion feature extraction,
supervised classifier learning, and domain adaptation. Furthermore, we
introduce available datasets for evaluation and summarize some main results.
Finally, we discuss some open questions and future directions that researchers
can pursue.
Related papers
- Generative Technology for Human Emotion Recognition: A Scope Review [11.578408396744237]
This survey aims to bridge the gaps in the existing literature by conducting a comprehensive analysis of over 320 research papers until June 2024.
It will introduce the mathematical principles of different generative models and the commonly used datasets.
It will provide an in-depth analysis of how generative techniques address emotion recognition based on different modalities.
arXiv Detail & Related papers (2024-07-04T05:22:55Z) - Affection: Learning Affective Explanations for Real-World Visual Data [50.28825017427716]
We introduce and share with the research community a large-scale dataset that contains emotional reactions and free-form textual explanations for 85,007 publicly available images.
We show that there is significant common ground to capture potentially plausible emotional responses with a large support in the subject population.
Our work paves the way for richer, more human-centric, and emotionally-aware image analysis systems.
arXiv Detail & Related papers (2022-10-04T22:44:17Z) - EEG based Emotion Recognition: A Tutorial and Review [21.939910428589638]
The scientific basis of EEG-based emotion recognition in the psychological and physiological levels is introduced.
We categorize these reviewed works into different technical routes and illustrate the theoretical basis and the research motivation.
arXiv Detail & Related papers (2022-03-16T08:28:28Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
We propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images.
To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features.
We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism.
arXiv Detail & Related papers (2021-10-24T02:41:41Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
We propose a stimuli-aware visual emotion analysis (VEA) method consisting of three stages, namely stimuli selection, feature extraction and emotion prediction.
To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network.
Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets.
arXiv Detail & Related papers (2021-09-04T08:14:52Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
We will comprehensively review the development of affective image content analysis (AICA) in the recent two decades.
We will focus on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence.
We discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
arXiv Detail & Related papers (2021-06-30T15:20:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.