論文の概要: CONVINCE: Collaborative Cross-Camera Video Analytics at the Edge
- arxiv url: http://arxiv.org/abs/2002.03797v1
- Date: Wed, 5 Feb 2020 23:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 21:29:48.525969
- Title: CONVINCE: Collaborative Cross-Camera Video Analytics at the Edge
- Title(参考訳): CONVINCE: エッジでのコラボレーティブなクロスカメラビデオ分析
- Authors: Hannaneh Barahouei Pasandi, Tamer Nadeem
- Abstract要約: 本稿では,カメラ間の協調的なビデオ分析パイプラインを実現するため,カメラを集合体として見るための新しいアプローチであるCONVINCEを紹介する。
以上の結果から, CONVINCEは記録フレームの約25%を送信し, オブジェクト識別精度が$sim$91%であることを示す。
- 参考スコア(独自算出の注目度): 1.5469452301122173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today, video cameras are deployed in dense for monitoring physical places
e.g., city, industrial, or agricultural sites. In the current systems, each
camera node sends its feed to a cloud server individually. However, this
approach suffers from several hurdles including higher computation cost, large
bandwidth requirement for analyzing the enormous data, and privacy concerns. In
dense deployment, video nodes typically demonstrate a significant
spatio-temporal correlation. To overcome these obstacles in current approaches,
this paper introduces CONVINCE, a new approach to look at the network cameras
as a collective entity that enables collaborative video analytics pipeline
among cameras. CONVINCE aims at 1) reducing the computation cost and bandwidth
requirements by leveraging spatio-temporal correlations among cameras in
eliminating redundant frames intelligently, and ii) improving vision
algorithms' accuracy by enabling collaborative knowledge sharing among relevant
cameras. Our results demonstrate that CONVINCE achieves an object
identification accuracy of $\sim$91\%, by transmitting only about $\sim$25\% of
all the recorded frames.
- Abstract(参考訳): 現在、ビデオカメラは、都市、工業、農業などの物理的場所を監視するために密集している。
現在のシステムでは、各カメラノードはそのフィードを個別にクラウドサーバーに送る。
しかし、このアプローチは計算コストの上昇、巨大なデータを分析するための大きな帯域幅の要求、プライバシの懸念など、いくつかのハードルに苦しむ。
密配置では、ビデオノードは典型的には大きな時空間相関を示す。
本稿では,これらの障害を克服するために,ネットワークカメラを集合体として見るための新しいアプローチであるCONVINCEを導入し,カメラ間の協調的なビデオ分析パイプラインを実現する。
CONVINCEは,1)カメラ間の時空間相関を利用して冗長フレームをインテリジェントに除去することにより,計算コストと帯域幅の要求を低減し,2)関連カメラ間の協調的な知識共有を可能にすることで,視覚アルゴリズムの精度を向上させることを目的とする。
本研究では,すべての記録フレームの約$\sim$25\%を送信することにより,オブジェクト識別精度が$\sim$91\%となることを示す。
関連論文リスト
- BlinkTrack: Feature Tracking over 100 FPS via Events and Images [50.98675227695814]
本稿では,RGB画像とイベントデータを統合した新しいフレームワークであるBlinkTrackを提案する。
本手法は,従来のカルマンフィルタを学習ベースのフレームワークに拡張し,イベントおよびイメージの分岐において微分可能なカルマンフィルタを利用する。
実験の結果、BlinkTrackは既存のイベントベースの手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-09-26T15:54:18Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - STAC: Leveraging Spatio-Temporal Data Associations For Efficient
Cross-Camera Streaming and Analytics [0.0]
本稿では,制約されたネットワーク環境下でのリアルタイム解析と推論を実現する,効率的なクロスカメラ監視システムを提案する。
ストリーム特性に対するフレームフィルタリングと最先端圧縮をSTACと統合する。
本研究では,このデータセットを用いてSTAの性能評価を行い,完全性評価のための精度指標と推論率を測定した。
論文 参考訳(メタデータ) (2024-01-27T04:02:52Z) - Enabling Cross-Camera Collaboration for Video Analytics on Distributed
Smart Cameras [7.609628915907225]
本稿では、スマートカメラ上でのクロスカメラコラボレーションによる分散ビデオ分析システムArgusを紹介する。
マルチカメラ・マルチターゲットトラッキングを主課題であるマルチカメラ・ビデオ分析とし、冗長で処理量の多いタスクを避ける新しい手法を開発した。
Argusは最先端と比較してオブジェクトの識別とエンドツーエンドのレイテンシを最大7.13倍と2.19倍に削減する。
論文 参考訳(メタデータ) (2024-01-25T12:27:03Z) - Learning Online Policies for Person Tracking in Multi-View Environments [4.62316736194615]
MVSparseは、複数の同期カメラにまたがる協調的多人数追跡のための新しいフレームワークである。
MVSparseシステムは、エッジサーバベースのモデルと分散軽量強化学習(RL)エージェントを組み合わせた、慎重にオーケストレーションされたパイプラインで構成されている。
私たちの貢献には、マルチカメラの歩行者追跡データセットの実証分析、マルチカメラの開発、マルチパーソナリティ検出パイプラインの開発、MVSparseの実装などが含まれています。
論文 参考訳(メタデータ) (2023-12-26T02:57:11Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - CANS: Communication Limited Camera Network Self-Configuration for
Intelligent Industrial Surveillance [8.360870648463653]
リアルタイムおよびインテリジェントなカメラネットワークによるビデオ監視には、大量のビデオデータによる計算集約的な視覚検出タスクが含まれる。
複数のビデオストリームは、エッジデバイスとカメラネットワークのリンク上で限られた通信リソースを競う。
ビデオ監視の適応型カメラネットワーク自己設定法(CANS)を提案する。
論文 参考訳(メタデータ) (2021-09-13T01:54:33Z) - Fusion-FlowNet: Energy-Efficient Optical Flow Estimation using Sensor
Fusion and Deep Fused Spiking-Analog Network Architectures [7.565038387344594]
本稿では,フレームベースとイベントベースの両方のセンサを用いたエネルギー効率の高い光フロー推定のためのセンサ融合フレームワークを提案する。
我々のネットワークは、高価なビデオアノテーションを避けるために教師なし学習を用いてエンドツーエンドで訓練されている。
論文 参考訳(メタデータ) (2021-03-19T02:03:33Z) - Single Shot Video Object Detector [215.06904478667337]
Single Shot Video Object Detector (SSVD)は、新しいアーキテクチャであり、ビデオ内のオブジェクト検出のための1段階の検出器に機能集約を新規に統合する。
448の448ドルの入力で、SSVDはImageNet VIDデータセットで79.2%のmAPを達成した。
論文 参考訳(メタデータ) (2020-07-07T15:36:26Z) - See More, Know More: Unsupervised Video Object Segmentation with
Co-Attention Siamese Networks [184.4379622593225]
教師なしビデオオブジェクトセグメンテーションタスクに対処するため,CO-attention Siamese Network (COSNet) と呼ばれる新しいネットワークを導入する。
我々は,ビデオフレーム間の固有相関の重要性を強調し,グローバルなコアテンション機構を取り入れた。
本稿では、ビデオ内のリッチなコンテキストをマイニングするために、異なるコアテンションの変種を導出する、統一的でエンドツーエンドのトレーニング可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-19T11:10:39Z) - Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks [150.5425122989146]
本研究は、ゼロショットビデオオブジェクトセグメンテーション(ZVOS)のための新しい注意グラフニューラルネットワーク(AGNN)を提案する。
AGNNは、フレームをノードとして効率的に表現し、任意のフレームペア間の関係をエッジとして表現するために、完全に連結されたグラフを構築している。
3つのビデオセグメンテーションデータセットの実験結果は、AGNNがそれぞれのケースに新しい最先端を設定していることを示している。
論文 参考訳(メタデータ) (2020-01-19T10:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。