CONVINCE: Collaborative Cross-Camera Video Analytics at the Edge
- URL: http://arxiv.org/abs/2002.03797v1
- Date: Wed, 5 Feb 2020 23:55:45 GMT
- Title: CONVINCE: Collaborative Cross-Camera Video Analytics at the Edge
- Authors: Hannaneh Barahouei Pasandi, Tamer Nadeem
- Abstract summary: This paper introduces CONVINCE, a new approach to look at cameras as a collective entity that enables collaborative video analytics pipeline among cameras.
Our results demonstrate that CONVINCE achieves an object identification accuracy of $sim$91%, by transmitting only about $sim$25% of all the recorded frames.
- Score: 1.5469452301122173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today, video cameras are deployed in dense for monitoring physical places
e.g., city, industrial, or agricultural sites. In the current systems, each
camera node sends its feed to a cloud server individually. However, this
approach suffers from several hurdles including higher computation cost, large
bandwidth requirement for analyzing the enormous data, and privacy concerns. In
dense deployment, video nodes typically demonstrate a significant
spatio-temporal correlation. To overcome these obstacles in current approaches,
this paper introduces CONVINCE, a new approach to look at the network cameras
as a collective entity that enables collaborative video analytics pipeline
among cameras. CONVINCE aims at 1) reducing the computation cost and bandwidth
requirements by leveraging spatio-temporal correlations among cameras in
eliminating redundant frames intelligently, and ii) improving vision
algorithms' accuracy by enabling collaborative knowledge sharing among relevant
cameras. Our results demonstrate that CONVINCE achieves an object
identification accuracy of $\sim$91\%, by transmitting only about $\sim$25\% of
all the recorded frames.
Related papers
- BlinkTrack: Feature Tracking over 100 FPS via Events and Images [50.98675227695814]
We propose a novel framework, BlinkTrack, which integrates event data with RGB images for high-frequency feature tracking.
Our method extends the traditional Kalman filter into a learning-based framework, utilizing differentiable Kalman filters in both event and image branches.
Experimental results indicate that BlinkTrack significantly outperforms existing event-based methods.
arXiv Detail & Related papers (2024-09-26T15:54:18Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - STAC: Leveraging Spatio-Temporal Data Associations For Efficient
Cross-Camera Streaming and Analytics [0.0]
We propose an efficient cross-cameras surveillance system that provides real-time analytics and inference under constrained network environments.
We integrate STAC with frame filtering and state-of-the-art compression for streaming characteristics.
We evaluate the performance of STA using this dataset to measure the accuracy metrics and inference rate for completenessid.
arXiv Detail & Related papers (2024-01-27T04:02:52Z) - Enabling Cross-Camera Collaboration for Video Analytics on Distributed
Smart Cameras [7.609628915907225]
We present Argus, a distributed video analytics system with cross-camera collaboration on smart cameras.
We identify multi-camera, multi-target tracking as the primary task multi-camera video analytics and develop a novel technique that avoids redundant, processing-heavy tasks.
Argus reduces the number of object identifications and end-to-end latency by up to 7.13x and 2.19x compared to the state-of-the-art.
arXiv Detail & Related papers (2024-01-25T12:27:03Z) - Learning Online Policies for Person Tracking in Multi-View Environments [4.62316736194615]
We introduce MVSparse, a novel framework for cooperative multi-person tracking across multiple synchronized cameras.
The MVSparse system is comprised of a carefully orchestrated pipeline, combining edge server-based models with distributed lightweight Reinforcement Learning (RL) agents.
Notably, our contributions include an empirical analysis of multi-camera pedestrian tracking datasets, the development of a multi-camera, multi-person detection pipeline, and the implementation of MVSparse.
arXiv Detail & Related papers (2023-12-26T02:57:11Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - CANS: Communication Limited Camera Network Self-Configuration for
Intelligent Industrial Surveillance [8.360870648463653]
Realtime and intelligent video surveillance via camera networks involve computation-intensive vision detection tasks with massive video data.
Multiple video streams compete for limited communication resources on the link between edge devices and camera networks.
An adaptive camera network self-configuration method (CANS) of video surveillance is proposed to cope with multiple video streams of heterogeneous quality of service.
arXiv Detail & Related papers (2021-09-13T01:54:33Z) - Fusion-FlowNet: Energy-Efficient Optical Flow Estimation using Sensor
Fusion and Deep Fused Spiking-Analog Network Architectures [7.565038387344594]
We present a sensor fusion framework for energy-efficient optical flow estimation using both frame- and event-based sensors.
Our network is end-to-end trained using unsupervised learning to avoid expensive video annotations.
arXiv Detail & Related papers (2021-03-19T02:03:33Z) - Single Shot Video Object Detector [215.06904478667337]
Single Shot Video Object Detector (SSVD) is a new architecture that novelly integrates feature aggregation into a one-stage detector for object detection in videos.
For $448 times 448$ input, SSVD achieves 79.2% mAP on ImageNet VID dataset.
arXiv Detail & Related papers (2020-07-07T15:36:26Z) - See More, Know More: Unsupervised Video Object Segmentation with
Co-Attention Siamese Networks [184.4379622593225]
We introduce a novel network, called CO-attention Siamese Network (COSNet), to address the unsupervised video object segmentation task.
We emphasize the importance of inherent correlation among video frames and incorporate a global co-attention mechanism.
We propose a unified and end-to-end trainable framework where different co-attention variants can be derived for mining the rich context within videos.
arXiv Detail & Related papers (2020-01-19T11:10:39Z) - Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks [150.5425122989146]
This work proposes a novel attentive graph neural network (AGNN) for zero-shot video object segmentation (ZVOS)
AGNN builds a fully connected graph to efficiently represent frames as nodes, and relations between arbitrary frame pairs as edges.
Experimental results on three video segmentation datasets show that AGNN sets a new state-of-the-art in each case.
arXiv Detail & Related papers (2020-01-19T10:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.