Fusion-FlowNet: Energy-Efficient Optical Flow Estimation using Sensor
Fusion and Deep Fused Spiking-Analog Network Architectures
- URL: http://arxiv.org/abs/2103.10592v1
- Date: Fri, 19 Mar 2021 02:03:33 GMT
- Title: Fusion-FlowNet: Energy-Efficient Optical Flow Estimation using Sensor
Fusion and Deep Fused Spiking-Analog Network Architectures
- Authors: Chankyu Lee, Adarsh Kumar Kosta and Kaushik Roy
- Abstract summary: We present a sensor fusion framework for energy-efficient optical flow estimation using both frame- and event-based sensors.
Our network is end-to-end trained using unsupervised learning to avoid expensive video annotations.
- Score: 7.565038387344594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Standard frame-based cameras that sample light intensity frames are heavily
impacted by motion blur for high-speed motion and fail to perceive scene
accurately when the dynamic range is high. Event-based cameras, on the other
hand, overcome these limitations by asynchronously detecting the variation in
individual pixel intensities. However, event cameras only provide information
about pixels in motion, leading to sparse data. Hence, estimating the overall
dense behavior of pixels is difficult. To address such issues associated with
the sensors, we present Fusion-FlowNet, a sensor fusion framework for
energy-efficient optical flow estimation using both frame- and event-based
sensors, leveraging their complementary characteristics. Our proposed network
architecture is also a fusion of Spiking Neural Networks (SNNs) and Analog
Neural Networks (ANNs) where each network is designed to simultaneously process
asynchronous event streams and regular frame-based images, respectively. Our
network is end-to-end trained using unsupervised learning to avoid expensive
video annotations. The method generalizes well across distinct environments
(rapid motion and challenging lighting conditions) and demonstrates
state-of-the-art optical flow prediction on the Multi-Vehicle Stereo Event
Camera (MVSEC) dataset. Furthermore, our network offers substantial savings in
terms of the number of network parameters and computational energy cost.
Related papers
- SDformerFlow: Spatiotemporal swin spikeformer for event-based optical flow estimation [10.696635172502141]
Event cameras generate asynchronous and sparse event streams capturing changes in light intensity.
Spiking neural networks (SNNs) share similar asynchronous and sparse characteristics and are well-suited for event cameras.
We propose two solutions for fast and robust optical flow estimation for event cameras: STTFlowNet and SDFlowformer.
arXiv Detail & Related papers (2024-09-06T07:48:18Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
We present the first dense SLAM system with a monocular camera and a light-weight ToF sensor.
We propose a multi-modal implicit scene representation that supports rendering both the signals from the RGB camera and light-weight ToF sensor.
Experiments demonstrate that our system well exploits the signals of light-weight ToF sensors and achieves competitive results.
arXiv Detail & Related papers (2023-08-28T07:56:13Z) - Revisiting Event-based Video Frame Interpolation [49.27404719898305]
Dynamic vision sensors or event cameras provide rich complementary information for video frame.
estimating optical flow from events is arguably more difficult than from RGB information.
We propose a divide-and-conquer strategy in which event-based intermediate frame synthesis happens incrementally in multiple simplified stages.
arXiv Detail & Related papers (2023-07-24T06:51:07Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
High dynamic range imaging aims to retrieve information from multiple low-dynamic range inputs to generate realistic output.
Existing methods often focus on the spatial misalignment across input frames caused by the foreground and/or camera motion.
We propose a novel alignment-free network with a Semantics Consistent Transformer (SCTNet) with both spatial and channel attention modules.
arXiv Detail & Related papers (2023-05-29T15:03:23Z) - Optical flow estimation from event-based cameras and spiking neural
networks [0.4899818550820575]
Event-based sensors are an excellent fit for Spiking Neural Networks (SNNs)
We propose a U-Net-like SNN which, after supervised training, is able to make dense optical flow estimations.
Thanks to separable convolutions, we have been able to develop a light model that can nonetheless yield reasonably accurate optical flow estimates.
arXiv Detail & Related papers (2023-02-13T16:17:54Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
Motion blur in an image may have practical interests in fundamental computer vision problems.
We propose a novel framework to estimate optical flow from a single motion-blurred image in an end-to-end manner.
arXiv Detail & Related papers (2021-03-04T12:45:18Z) - Combining Events and Frames using Recurrent Asynchronous Multimodal
Networks for Monocular Depth Prediction [51.072733683919246]
We introduce Recurrent Asynchronous Multimodal (RAM) networks to handle asynchronous and irregular data from multiple sensors.
Inspired by traditional RNNs, RAM networks maintain a hidden state that is updated asynchronously and can be queried at any time to generate a prediction.
We show an improvement over state-of-the-art methods by up to 30% in terms of mean depth absolute error.
arXiv Detail & Related papers (2021-02-18T13:24:35Z) - Back to Event Basics: Self-Supervised Learning of Image Reconstruction
for Event Cameras via Photometric Constancy [0.0]
Event cameras are novel vision sensors that sample, in an asynchronous fashion, brightness increments with low latency and high temporal resolution.
We propose a novel, lightweight neural network for optical flow estimation that achieves high speed inference with only a minor drop in performance.
Results across multiple datasets show that the performance of the proposed self-supervised approach is in line with the state-of-the-art.
arXiv Detail & Related papers (2020-09-17T13:30:05Z) - Event-based Asynchronous Sparse Convolutional Networks [54.094244806123235]
Event cameras are bio-inspired sensors that respond to per-pixel brightness changes in the form of asynchronous and sparse "events"
We present a general framework for converting models trained on synchronous image-like event representations into asynchronous models with identical output.
We show both theoretically and experimentally that this drastically reduces the computational complexity and latency of high-capacity, synchronous neural networks.
arXiv Detail & Related papers (2020-03-20T08:39:49Z) - Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient
Hybrid Neural Networks [40.44712305614071]
We present Spike-FlowNet, a deep hybrid neural network architecture integrating SNNs and ANNs for efficiently estimating optical flow from sparse event camera outputs.
The network is end-to-end trained with self-supervised learning on Multi-Vehicle Stereo Event Camera (MVSEC) dataset.
arXiv Detail & Related papers (2020-03-14T20:37:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.