Complex density of continuum states in resonant quantum tunneling
- URL: http://arxiv.org/abs/2002.03874v2
- Date: Wed, 17 Jun 2020 10:41:59 GMT
- Title: Complex density of continuum states in resonant quantum tunneling
- Authors: Pavel Str\'ansk\'y, Milan \v{S}indelka, Michal Kloc, and Pavel Cejnar
- Abstract summary: We show that the real part of the density is proportional to a real "time shift" of the transmitted particle, while the imaginary part reflects the imaginary time of an instanton-like tunneling trajectory.
In particular, we show that stationary points of the potentials give rise to specific singularities of both real and imaginary densities which represent close analogues of excited-state quantum phase transitions in bound systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a complex-extended continuum level density and apply it to
one-dimensional scattering problems involving tunneling through finite-range
potentials. We show that the real part of the density is proportional to a real
"time shift" of the transmitted particle, while the imaginary part reflects the
imaginary time of an instanton-like tunneling trajectory. We confirm these
assumptions for several potentials using the complex scaling method. In
particular, we show that stationary points of the potentials give rise to
specific singularities of both real and imaginary densities which represent
close analogues of excited-state quantum phase transitions in bound systems.
Related papers
- Quantum tunneling from excited states: Recovering imaginary-time
instantons from a real-time analysis [0.0]
We revisit the path integral description of quantum tunneling and show how it can be generalized to excited states.
For clarity, we focus on the simple toy model of a point particle in a double-well potential, for which we perform all steps explicitly.
We find that, for systems without an explicit time-dependence, our approach reproduces the picture of an instanton-like solution defined on a finite Euclidean-time interval.
arXiv Detail & Related papers (2024-01-31T19:00:00Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Dissipation-driven formation of entangled dark states in
strongly-coupled inhomogeneous many-qubit systems in solid-state nanocavities [0.0]
We study quantum dynamics of many-qubit systems strongly coupled to a quantized electromagnetic cavity field.
We show that depending on the initial quantum state preparation, an ensemble of qubits can evolve into a rich variety of many-qubit entangled states.
arXiv Detail & Related papers (2022-07-19T19:33:32Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Continuum analogues of excited-state quantum phase transitions [0.0]
We show a semiclassical description of one-dimensional quantum tunneling through multibarrier potentials in terms of complex time.
We numerically verify the predicted effects in several tunneling potentials.
arXiv Detail & Related papers (2021-03-03T16:07:30Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Impact of the transverse direction on the many-body tunneling dynamics
in a two-dimensional bosonic Josephson junction [0.0]
Tunneling in a many-body system appears as one of the novel implications of quantum physics.
We theoretically describe the quantum dynamics of the tunneling phenomenon of a few intricate bosonic clouds in a closed system of a two-dimensional symmetric double-well potential.
arXiv Detail & Related papers (2020-06-06T13:51:14Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.