Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits
- URL: http://arxiv.org/abs/2102.04265v2
- Date: Mon, 6 Dec 2021 22:56:44 GMT
- Title: Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits
- Authors: Kaelan Donatella, Zakari Denis, Alexandre Le Boit\'e, and Cristiano
Ciuti
- Abstract summary: We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the continuous-time dynamics of highly-entangling
intermediate-scale quantum circuits in the presence of dissipation and
decoherence. By compressing the Hilbert space to a time-dependent "corner"
subspace that supports faithful representations of the density matrix, we
simulate a noisy quantum Fourier transform processor with up to 21 qubits. Our
method is efficient to compute with a controllable accuracy the time evolution
of intermediate-scale open quantum systems with moderate entropy, while taking
into account microscopic dissipative processes rather than relying on digital
error models. The circuit size reached in our simulations allows to extract the
scaling behaviour of error propagation with the dissipation rates and the
number of qubits. Moreover, we show that depending on the dissipative
mechanisms at play, the choice of input state has a strong impact on the
performance of the quantum algorithm.
Related papers
- Quantum error mitigation in optimized circuits for particle-density correlations in real-time dynamics of the Schwinger model [0.0]
In principle, it is possible to calculate non-equal-time correlation functions, from which one can detect interesting phenomena.
In practice, these calculations are strongly affected by noise, due to the complexity of the required quantum circuits.
We derive a digital circuit implementation of the time-evolution of particle-density correlation operators and their correlation, comparing results from exact evolution, bare noisy simulations and simulations with different error mitigation techniques.
arXiv Detail & Related papers (2025-01-18T17:32:59Z) - Dynamical signatures of non-Markovianity in a dissipative-driven qubit [0.0]
We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a bosonic environment.
Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation.
arXiv Detail & Related papers (2024-01-17T15:58:50Z) - Fermionic wave packet scattering: a quantum computing approach [0.0]
We propose a method to prepare Gaussian wave packets with momentum on top of the interacting ground state of a fermionic Hamiltonian.
We show how to efficiently obtain expectation values of observables throughout the evolution of the wave packets on digital quantum computers.
We characterize the phenomenon and provide a first step towards studying more complicated collision processes on digital quantum computers.
arXiv Detail & Related papers (2023-12-04T19:00:04Z) - Overhead-constrained circuit knitting for variational quantum dynamics [0.0]
We use circuit knitting to partition a large quantum system into smaller subsystems that can each be simulated on a separate device.
We show that the same method can be used to reduce the circuit depth by cutting long-ranged gates.
arXiv Detail & Related papers (2023-09-14T17:01:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Mitigated barren plateaus in the time-nonlocal optimization of analog
quantum-algorithm protocols [0.0]
algorithmic classes such as variational quantum algorithms have been shown to suffer from barren plateaus.
We present an approach to quantum algorithm optimization that is based on trainable Fourier coefficients of Hamiltonian system parameters.
arXiv Detail & Related papers (2021-11-15T21:13:10Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.