論文の概要: Towards explainable meta-learning
- arxiv url: http://arxiv.org/abs/2002.04276v2
- Date: Mon, 12 Jul 2021 12:23:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 01:27:45.011566
- Title: Towards explainable meta-learning
- Title(参考訳): 説明可能なメタラーニングに向けて
- Authors: Katarzyna Wo\'znica and Przemys{\l}aw Biecek
- Abstract要約: メタラーニングは、さまざまな機械学習アルゴリズムが幅広い予測タスクでどのように機能するかを発見することを目的としている。
State of the Artアプローチは、最高のメタモデルを探すことに重点を置いているが、これらの異なる側面がパフォーマンスにどのように貢献するかは説明していない。
ブラックボックスサロゲートモデルから知識を抽出するために,eXplainable Artificial Intelligence (XAI) のために開発された手法を提案する。
- 参考スコア(独自算出の注目度): 5.802346990263708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-learning is a field that aims at discovering how different machine
learning algorithms perform on a wide range of predictive tasks. Such knowledge
speeds up the hyperparameter tuning or feature engineering. With the use of
surrogate models various aspects of the predictive task such as meta-features,
landmarker models e.t.c. are used to predict the expected performance. State of
the art approaches are focused on searching for the best meta-model but do not
explain how these different aspects contribute to its performance. However, to
build a new generation of meta-models we need a deeper understanding of the
importance and effect of meta-features on the model tunability. In this paper,
we propose techniques developed for eXplainable Artificial Intelligence (XAI)
to examine and extract knowledge from black-box surrogate models. To our
knowledge, this is the first paper that shows how post-hoc explainability can
be used to improve the meta-learning.
- Abstract(参考訳): メタラーニング(meta-learning)は、さまざまな機械学習アルゴリズムがさまざまな予測タスクでどのように機能するかを発見することを目的とした分野である。
このような知識はハイパーパラメータチューニングや機能エンジニアリングをスピードアップさせる。
メタ機能のような予測タスクの様々な側面のサロゲートモデルを使用することで、ランドマークモデルe.t.c.が期待性能の予測に使用される。
State of the Artアプローチは、最高のメタモデルを探すことに重点を置いているが、これらの異なる側面がパフォーマンスにどのように貢献するかは説明していない。
しかし、新しい世代のメタモデルを構築するには、モデルチューニング容易性に対するメタ機能の重要性と効果をより深く理解する必要があります。
本稿では,ブラックボックスサロゲートモデルから知識を抽出するために,eXplainable Artificial Intelligence (XAI) のために開発された手法を提案する。
我々の知る限り、この論文は、メタ学習を改善するためにポストホックな説明可能性をどのように利用できるかを示す最初の論文である。
関連論文リスト
- Learn To Learn More Precisely [30.825058308218047]
より正確に学習すること」は、モデルにデータから正確な目標知識を学習させることを目的としている。
学習知識の一貫性を最大化するために,メタ自己蒸留(Meta Self-Distillation:MSD)という,シンプルで効果的なメタ学習フレームワークを提案する。
MSDは、標準シナリオと拡張シナリオの両方において、数ショットの分類タスクにおいて顕著なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-08-08T17:01:26Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
メタラーナーの性能を向上させるために,SiMT(Self-improving Momentum Target)を提案する。
SiMTはメタラーナーの時間アンサンブルから適応してターゲットモデルを生成する。
我々は、SiMTが幅広いメタ学習手法と組み合わせることで、大きなパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2022-10-11T06:45:15Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Bootstrapped Meta-Learning [48.017607959109924]
本稿では,メタ学習者が自らを教えることによって,メタ最適化問題に挑戦するアルゴリズムを提案する。
アルゴリズムはまずメタラーナーからターゲットをブートストラップし、選択した(擬似)測度の下でそのターゲットまでの距離を最小化することでメタラーナーを最適化する。
我々は、Atari ALEベンチマークでモデルフリーエージェントの新たな最先端技術を実現し、数ショットの学習においてMAMLを改善し、我々のアプローチがいかに新しい可能性を開くかを実証する。
論文 参考訳(メタデータ) (2021-09-09T18:29:05Z) - Learning an Explicit Hyperparameter Prediction Function Conditioned on
Tasks [62.63852372239708]
メタ学習は、観察されたタスクから機械学習の学習方法論を学び、新しいクエリタスクに一般化することを目的としている。
我々は、これらの学習手法を、全てのトレーニングタスクで共有される明示的なハイパーパラメータ予測関数の学習として解釈する。
このような設定は、メタ学習方法論が多様なクエリタスクに柔軟に適合できることを保証する。
論文 参考訳(メタデータ) (2021-07-06T04:05:08Z) - A Metamodel and Framework for Artificial General Intelligence From
Theory to Practice [11.756425327193426]
本稿では,自律学習と適応性を大幅に向上させるメタモデルに基づく知識表現を提案する。
我々は,時系列解析,コンピュータビジョン,自然言語理解といった問題にメタモデルを適用した。
メタモデルの驚くべき結果のひとつは、新たなレベルの自律的な学習と、マシンインテリジェンスのための最適な機能を可能にするだけでなく、それを可能にすることだ。
論文 参考訳(メタデータ) (2021-02-11T16:45:58Z) - Learning Abstract Task Representations [0.6690874707758511]
深層ニューラルネットワークにおける潜伏変数としての新しい抽象メタ特徴を誘導する手法を提案する。
深層ニューラルネットワークを特徴抽出器として用いた手法を実証する。
論文 参考訳(メタデータ) (2021-01-19T20:31:02Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
メタラーニングはラーニング・トゥ・ラーン(Learning-to-Lern)とも呼ばれる。
メタラーニング手法は,ブラックボックスメタラーニング,メトリックベースメタラーニング,階層型メタラーニング,ベイズ的メタラーニングフレームワークである。
論文 参考訳(メタデータ) (2020-04-17T03:11:08Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
メタラーニングの基礎となる力学と、メタラーニングを用いて訓練されたモデルと古典的に訓練されたモデルの違いをよりよく理解する。
数ショット分類のための標準訓練ルーチンの性能を高める正則化器を開発した。
論文 参考訳(メタデータ) (2020-02-17T03:18:45Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
メタラーニングと従来の教師付き学習の関連性を再考し,強化することで,原則的,統一的なフレームワークの提供を目指す。
タスク固有のデータセットとターゲットモデルを(機能、ラベル)サンプルとして扱うことで、多くのメタ学習アルゴリズムを教師付き学習のインスタンスに還元することができる。
この視点は、メタラーニングを直感的で実践的なフレームワークに統一するだけでなく、教師付き学習から直接洞察を伝達してメタラーニングを改善することができる。
論文 参考訳(メタデータ) (2020-02-03T06:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。