論文の概要: Fake News Detection on News-Oriented Heterogeneous Information Networks
through Hierarchical Graph Attention
- arxiv url: http://arxiv.org/abs/2002.04397v2
- Date: Sat, 13 Feb 2021 03:16:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 20:43:57.793471
- Title: Fake News Detection on News-Oriented Heterogeneous Information Networks
through Hierarchical Graph Attention
- Title(参考訳): 階層グラフによるニュース指向異種情報ネットワーク上の偽ニュース検出
- Authors: Yuxiang Ren, Jiawei Zhang
- Abstract要約: 階層型グラフ注意ネットワーク(HGAT)という,新たなフェイクニュース検出フレームワークを提案する。
HGATは、新しい階層的な注意機構を使用して、HINでノード表現学習を行い、ニュース記事ノードを分類することでフェイクニュースを検出する。
2つの実世界のフェイクニュースデータセットの実験は、HGATがテキストベースのモデルや他のネットワークベースのモデルより優れていることを示している。
- 参考スコア(独自算出の注目度): 12.250335118888891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The viral spread of fake news has caused great social harm, making fake news
detection an urgent task. Current fake news detection methods rely heavily on
text information by learning the extracted news content or writing style of
internal knowledge. However, deliberate rumors can mask writing style,
bypassing language models and invalidating simple text-based models. In fact,
news articles and other related components (such as news creators and news
topics) can be modeled as a heterogeneous information network (HIN for short).
In this paper, we propose a novel fake news detection framework, namely
Hierarchical Graph Attention Network(HGAT), which uses a novel hierarchical
attention mechanism to perform node representation learning in HIN, and then
detects fake news by classifying news article nodes. Experiments on two
real-world fake news datasets show that HGAT can outperform text-based models
and other network-based models. In addition, the experiment proved the
expandability and generalizability of our for graph representation learning and
other node classification related applications in heterogeneous graphs.
- Abstract(参考訳): フェイクニュースの拡散が社会に大きな害を与え、フェイクニュース検出が緊急の課題となった。
現在の偽ニュース検出方法は、抽出したニュースコンテンツや内部知識の書き方を学ぶことによって、テキスト情報に大きく依存している。
しかし、意図的な噂は、書き込みスタイルを隠蔽し、言語モデルをバイパスし、単純なテキストベースのモデルを無効にする。
実際、ニュース記事やその他の関連コンポーネント(ニュース作成者やニューストピックなど)は、異種情報ネットワーク(略してHIN)としてモデル化することができる。
本稿では,HINでノード表現学習を行うための新しい階層的注意機構を用いて,ニュース記事ノードを分類してフェイクニュースを検出する,新しいフェイクニュース検出フレームワークである階層的グラフ注意ネットワーク(HGAT)を提案する。
2つの実世界のフェイクニュースデータセットの実験は、HGATがテキストベースのモデルや他のネットワークベースのモデルより優れていることを示している。
さらに,不均一グラフにおけるグラフ表現学習および他のノード分類関連応用のための拡張性と一般化性を示した。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Modelling Social Context for Fake News Detection: A Graph Neural Network
Based Approach [0.39146761527401425]
フェイクニュースの検出は、情報の信頼性を確保し、ニュースエコシステムの信頼性を維持するために不可欠である。
本稿では,ハイブリッドグラフニューラルネットワークによる偽ニュース検出の社会的文脈を解析した。
論文 参考訳(メタデータ) (2022-07-27T12:58:33Z) - Fake News Quick Detection on Dynamic Heterogeneous Information Networks [3.599616699656401]
偽ニュース検出のための新しい動的不均一グラフニューラルネットワーク(DHGNN)を提案する。
我々はまず、ニュース記事の内容と著者プロファイルのセマンティック表現を得るために、BERTと微調整BERTを実装した。
そして、文脈情報と関係を反映した異質なニュース著者グラフを構築する。
論文 参考訳(メタデータ) (2022-05-14T11:23:25Z) - A comparative analysis of Graph Neural Networks and commonly used
machine learning algorithms on fake news detection [0.0]
低コスト、ソーシャルプラットフォーム経由のシンプルなアクセシビリティ、低予算のオンラインニュースソースが、偽ニュースの普及に寄与する要因の1つだ。
既存の偽ニュース検出アルゴリズムのほとんどは、ニュースコンテンツのみに焦点を当てている。
エンゲージメントのあるユーザーによる事前投稿やソーシャル活動は、ニュースに対する見解に関する豊富な情報を提供し、フェイクニュースの識別を改善する重要な能力を持っている。
論文 参考訳(メタデータ) (2022-03-26T18:40:03Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Hetero-SCAN: Towards Social Context Aware Fake News Detection via
Heterogeneous Graph Neural Network [11.145085584637744]
異種グラフニューラルネットワークに基づく新しい社会的文脈認識型偽ニュース検出手法Hetero-SCANを提案する。
我々は,Hetero-SCANが,最先端のテキストベースおよびグラフベースの偽ニュース検出手法に対して,性能と効率の面で大幅な改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-13T15:21:44Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Adversarial Active Learning based Heterogeneous Graph Neural Network for
Fake News Detection [18.847254074201953]
新規な偽ニュース検出フレームワークであるAdversarial Active Learning-based Heterogeneous Graph Neural Network(AA-HGNN)を提案する。
AA-HGNNは、特にラベル付きデータのあいまいさに直面している場合、学習性能を高めるためにアクティブな学習フレームワークを利用する。
2つの実世界のフェイクニュースデータセットによる実験により、我々のモデルはテキストベースのモデルや他のグラフベースのモデルより優れていることが示された。
論文 参考訳(メタデータ) (2021-01-27T05:05:25Z) - Graph Enhanced Representation Learning for News Recommendation [85.3295446374509]
本稿では,ユーザとニュースの表現学習を強化するニューズレコメンデーション手法を提案する。
本手法では,歴史的ユーザクリック行動から構築した二部グラフのノードとして,ユーザとニュースをみなす。
論文 参考訳(メタデータ) (2020-03-31T15:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。