Fake News Detection on News-Oriented Heterogeneous Information Networks
through Hierarchical Graph Attention
- URL: http://arxiv.org/abs/2002.04397v2
- Date: Sat, 13 Feb 2021 03:16:22 GMT
- Title: Fake News Detection on News-Oriented Heterogeneous Information Networks
through Hierarchical Graph Attention
- Authors: Yuxiang Ren, Jiawei Zhang
- Abstract summary: We propose a novel fake news detection framework, namely Hierarchical Graph Attention Network(HGAT)
HGAT uses a novel hierarchical attention mechanism to perform node representation learning in HIN, and then detects fake news by classifying news article nodes.
Experiments on two real-world fake news datasets show that HGAT can outperform text-based models and other network-based models.
- Score: 12.250335118888891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The viral spread of fake news has caused great social harm, making fake news
detection an urgent task. Current fake news detection methods rely heavily on
text information by learning the extracted news content or writing style of
internal knowledge. However, deliberate rumors can mask writing style,
bypassing language models and invalidating simple text-based models. In fact,
news articles and other related components (such as news creators and news
topics) can be modeled as a heterogeneous information network (HIN for short).
In this paper, we propose a novel fake news detection framework, namely
Hierarchical Graph Attention Network(HGAT), which uses a novel hierarchical
attention mechanism to perform node representation learning in HIN, and then
detects fake news by classifying news article nodes. Experiments on two
real-world fake news datasets show that HGAT can outperform text-based models
and other network-based models. In addition, the experiment proved the
expandability and generalizability of our for graph representation learning and
other node classification related applications in heterogeneous graphs.
Related papers
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Modelling Social Context for Fake News Detection: A Graph Neural Network
Based Approach [0.39146761527401425]
Detection of fake news is crucial to ensure the authenticity of information and maintain the news ecosystems reliability.
This paper has analyzed the social context of fake news detection with a hybrid graph neural network based approach.
arXiv Detail & Related papers (2022-07-27T12:58:33Z) - Fake News Quick Detection on Dynamic Heterogeneous Information Networks [3.599616699656401]
We propose a novel Dynamic Heterogeneous Graph Neural Network (DHGNN) for fake news quick detection.
We first implement BERT and fine-tuned BERT to get a semantic representation of the news article contents and author profiles.
Then, we construct the heterogeneous news-author graph to reflect contextual information and relationships.
arXiv Detail & Related papers (2022-05-14T11:23:25Z) - A comparative analysis of Graph Neural Networks and commonly used
machine learning algorithms on fake news detection [0.0]
Low cost, simple accessibility via social platforms, and a plethora of low-budget online news sources are some of the factors that contribute to the spread of false news.
Most of the existing fake news detection algorithms are solely focused on the news content only.
engaged users prior posts or social activities provide a wealth of information about their views on news and have significant ability to improve fake news identification.
arXiv Detail & Related papers (2022-03-26T18:40:03Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - Hetero-SCAN: Towards Social Context Aware Fake News Detection via
Heterogeneous Graph Neural Network [11.145085584637744]
We propose a novel social context aware fake news detection method, Hetero-SCAN, based on a heterogeneous graph neural network.
We demonstrate that Hetero-SCAN yields significant improvement over state-of-the-art text-based and graph-based fake news detection methods in terms of performance and efficiency.
arXiv Detail & Related papers (2021-09-13T15:21:44Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - Adversarial Active Learning based Heterogeneous Graph Neural Network for
Fake News Detection [18.847254074201953]
We propose a novel fake news detection framework, namely Adversarial Active Learning-based Heterogeneous Graph Neural Network (AA-HGNN)
AA-HGNN utilizes an active learning framework to enhance learning performance, especially when facing the paucity of labeled data.
Experiments with two real-world fake news datasets show that our model can outperform text-based models and other graph-based models.
arXiv Detail & Related papers (2021-01-27T05:05:25Z) - Graph Enhanced Representation Learning for News Recommendation [85.3295446374509]
We propose a news recommendation method which can enhance the representation learning of users and news.
In our method, users and news are both viewed as nodes in a bipartite graph constructed from historical user click behaviors.
arXiv Detail & Related papers (2020-03-31T15:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.