User Preference-aware Fake News Detection
- URL: http://arxiv.org/abs/2104.12259v1
- Date: Sun, 25 Apr 2021 21:19:24 GMT
- Title: User Preference-aware Fake News Detection
- Authors: Yingtong Dou, Kai Shu, Congying Xia, Philip S. Yu, Lichao Sun
- Abstract summary: Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
- Score: 61.86175081368782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disinformation and fake news have posed detrimental effects on individuals
and society in recent years, attracting broad attention to fake news detection.
The majority of existing fake news detection algorithms focus on mining news
content and/or the surrounding exogenous context for discovering deceptive
signals; while the endogenous preference of a user when he/she decides to
spread a piece of fake news or not is ignored. The confirmation bias theory has
indicated that a user is more likely to spread a piece of fake news when it
confirms his/her existing beliefs/preferences. Users' historical, social
engagements such as posts provide rich information about users' preferences
toward news and have great potential to advance fake news detection. However,
the work on exploring user preference for fake news detection is somewhat
limited. Therefore, in this paper, we study the novel problem of exploiting
user preference for fake news detection. We propose a new framework, UPFD,
which simultaneously captures various signals from user preferences by joint
content and graph modeling. Experimental results on real-world datasets
demonstrate the effectiveness of the proposed framework. We release our code
and data as a benchmark for GNN-based fake news detection:
https://github.com/safe-graph/GNN-FakeNews.
Related papers
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Mining User-aware Multi-Relations for Fake News Detection in Large Scale
Online Social Networks [25.369320307526362]
credible users are more likely to share trustworthy news, while untrusted users have a higher probability of spreading untrustworthy news.
We construct a dual-layer graph to extract multiple relations of news and users in social networks to derive rich information for detecting fake news.
We propose a fake news detection model named Us-DeFake, which learns the propagation features of news in the news layer and the interaction features of users in the user layer.
arXiv Detail & Related papers (2022-12-21T05:30:35Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - Is it Fake? News Disinformation Detection on South African News Websites [0.015863809575305417]
Natural Language Processing is widely used in detecting fake news.
It is especially a problem in more localised contexts such as in South Africa.
In this work we investigate fake news detection on South African websites.
arXiv Detail & Related papers (2021-08-06T04:54:03Z) - An Event Correlation Filtering Method for Fake News Detection [0.0]
Existing deep learning models have achieved great progress to tackle the problem of fake news detection.
To improve the detection performance of fake news, we take advantage of the event correlations of news.
ECFM is proposed to integrate them to detect fake news in an event correlation filtering manner.
arXiv Detail & Related papers (2020-12-10T07:31:07Z) - Early Detection of Fake News by Utilizing the Credibility of News,
Publishers, and Users Based on Weakly Supervised Learning [23.96230360460216]
We propose a novel Structure-aware Multi-head Attention Network (SMAN), which combines the news content, publishing, and reposting relations of publishers and users.
SMAN can detect fake news in 4 hours with an accuracy of over 91%, which is much faster than the state-of-the-art models.
arXiv Detail & Related papers (2020-12-08T05:53:33Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z) - Where Are the Facts? Searching for Fact-checked Information to Alleviate
the Spread of Fake News [9.68145635795782]
We propose a novel framework to search for fact-checking articles, which address the content of an original tweet (that may contain misinformation) posted by online users.
The search can directly warn fake news posters and online users about misinformation, discourage them from spreading fake news, and scale up verified content on social media.
Our framework uses both text and images to search for fact-checking articles, and achieves promising results on real-world datasets.
arXiv Detail & Related papers (2020-10-07T04:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.