HRINet: Alternative Supervision Network for High-resolution CT image
Interpolation
- URL: http://arxiv.org/abs/2002.04455v2
- Date: Sun, 7 Jun 2020 19:13:08 GMT
- Title: HRINet: Alternative Supervision Network for High-resolution CT image
Interpolation
- Authors: Jiawei Li, Jae Chul Koh, Won-Sook Lee
- Abstract summary: We propose a novel network, High Resolution Interpolation Network (HRINet), aiming at producing high-resolution CT images.
We combine the idea of ACAI and GANs, and propose a novel idea of alternative supervision method by applying supervised and unsupervised training.
Our experiments show the great improvement on 256 2 and 5122 images quantitatively and qualitatively.
- Score: 3.7966959476339035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image interpolation in medical area is of high importance as most 3D
biomedical volume images are sampled where the distance between consecutive
slices significantly greater than the in-plane pixel size due to radiation dose
or scanning time. Image interpolation creates a number of new slices between
known slices in order to obtain an isotropic volume image. The results can be
used for the higher quality of 3D reconstruction and visualization of human
body structures. Semantic interpolation on the manifold has been proved to be
very useful for smoothing image interpolation. Nevertheless, all previous
methods focused on low-resolution image interpolation, and most of them work
poorly on high-resolution image. We propose a novel network, High Resolution
Interpolation Network (HRINet), aiming at producing high-resolution CT image
interpolations. We combine the idea of ACAI and GANs, and propose a novel idea
of alternative supervision method by applying supervised and unsupervised
training alternatively to raise the accuracy of human organ structures in CT
while keeping high quality. We compare an MSE based and a perceptual based loss
optimizing methods for high quality interpolation, and show the tradeoff
between the structural correctness and sharpness. Our experiments show the
great improvement on 256 2 and 5122 images quantitatively and qualitatively.
Related papers
- Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3D is a novel method for efficiently generating high-fidelity textured meshes from single-view images.
To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model.
arXiv Detail & Related papers (2023-10-23T15:02:23Z) - Single-subject Multi-contrast MRI Super-resolution via Implicit Neural
Representations [9.683341998041634]
Implicit Neural Representations (INR) proposed to learn two different contrasts of complementary views in a continuous spatial function.
Our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets.
arXiv Detail & Related papers (2023-03-27T10:18:42Z) - CLADE: Cycle Loss Augmented Degradation Enhancement for Unpaired
Super-Resolution of Anisotropic Medical Images [0.06597195879147556]
Three-dimensional (3D) imaging is popular in medical applications, however, anisotropic 3D volumes with thick, low-spatial-resolution slices are often acquired to reduce scan times.
Deep learning (DL) offers a solution to recover high-resolution features through super-resolution reconstruction (SRR)
We show the feasibility of CLADE in abdominal MRI and abdominal CT and demonstrate significant improvements in CLADE image quality over low-resolution volumes.
arXiv Detail & Related papers (2023-03-21T13:19:51Z) - Mutual Attention-based Hybrid Dimensional Network for Multimodal Imaging
Computer-aided Diagnosis [4.657804635843888]
We propose a novel mutual attention-based hybrid dimensional network for MultiModal 3D medical image classification (MMNet)
The hybrid dimensional network integrates 2D CNN with 3D convolution modules to generate deeper and more informative feature maps.
We further design a mutual attention framework in the network to build the region-wise consistency in similar stereoscopic regions of different image modalities.
arXiv Detail & Related papers (2022-01-24T02:31:25Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Joint Semi-supervised 3D Super-Resolution and Segmentation with Mixed
Adversarial Gaussian Domain Adaptation [13.477290490742224]
Super-resolution in medical imaging aims to increase the resolution of images but is conventionally trained on features from low resolution datasets.
Here we propose a semi-supervised multi-task generative adversarial network (Gemini-GAN) that performs joint super-resolution of the images and their labels.
Our proposed approach is extensively evaluated on two transnational multi-ethnic populations of 1,331 and 205 adults respectively.
arXiv Detail & Related papers (2021-07-16T15:42:39Z) - SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks [9.201328999176402]
We propose a framework called SOUP-GAN: Super-resolution Optimized Using Perceptual-tuned Generative Adversarial Network (GAN)
Our model shows promise as a novel 3D SR technique, providing potential applications in both clinical and research settings.
arXiv Detail & Related papers (2021-06-04T16:59:23Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.