Joint Semi-supervised 3D Super-Resolution and Segmentation with Mixed
Adversarial Gaussian Domain Adaptation
- URL: http://arxiv.org/abs/2107.07975v1
- Date: Fri, 16 Jul 2021 15:42:39 GMT
- Title: Joint Semi-supervised 3D Super-Resolution and Segmentation with Mixed
Adversarial Gaussian Domain Adaptation
- Authors: Nicolo Savioli, Antonio de Marvao, Wenjia Bai, Shuo Wang, Stuart A.
Cook, Calvin W.L. Chin, Daniel Rueckert, Declan P. O'Regan
- Abstract summary: Super-resolution in medical imaging aims to increase the resolution of images but is conventionally trained on features from low resolution datasets.
Here we propose a semi-supervised multi-task generative adversarial network (Gemini-GAN) that performs joint super-resolution of the images and their labels.
Our proposed approach is extensively evaluated on two transnational multi-ethnic populations of 1,331 and 205 adults respectively.
- Score: 13.477290490742224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimising the analysis of cardiac structure and function requires accurate
3D representations of shape and motion. However, techniques such as cardiac
magnetic resonance imaging are conventionally limited to acquiring contiguous
cross-sectional slices with low through-plane resolution and potential
inter-slice spatial misalignment. Super-resolution in medical imaging aims to
increase the resolution of images but is conventionally trained on features
from low resolution datasets and does not super-resolve corresponding
segmentations. Here we propose a semi-supervised multi-task generative
adversarial network (Gemini-GAN) that performs joint super-resolution of the
images and their labels using a ground truth of high resolution 3D cines and
segmentations, while an unsupervised variational adversarial mixture
autoencoder (V-AMA) is used for continuous domain adaptation. Our proposed
approach is extensively evaluated on two transnational multi-ethnic populations
of 1,331 and 205 adults respectively, delivering an improvement on state of the
art methods in terms of Dice index, peak signal to noise ratio, and structural
similarity index measure. This framework also exceeds the performance of state
of the art generative domain adaptation models on external validation (Dice
index 0.81 vs 0.74 for the left ventricle). This demonstrates how joint
super-resolution and segmentation, trained on 3D ground-truth data with
cross-domain generalization, enables robust precision phenotyping in diverse
populations.
Related papers
- Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing [14.0825980706386]
Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision.
In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for 3D medical image segmentation.
The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric-mixer to capture the global dependencies at low-resolution feature representations.
arXiv Detail & Related papers (2024-10-20T11:08:38Z) - CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data [19.085329423308938]
CycleINR is a novel enhanced Implicit Neural Representation model for 3D medical data super-resolution.
We introduce a new metric, Slice-wise Noise Level Inconsistency (SNLI), to quantitatively assess inter-slice noise level inconsistency.
arXiv Detail & Related papers (2024-04-07T08:48:01Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Single-subject Multi-contrast MRI Super-resolution via Implicit Neural
Representations [9.683341998041634]
Implicit Neural Representations (INR) proposed to learn two different contrasts of complementary views in a continuous spatial function.
Our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets.
arXiv Detail & Related papers (2023-03-27T10:18:42Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Joint Motion Correction and Super Resolution for Cardiac Segmentation
via Latent Optimisation [18.887520377396925]
We propose a novel latent optimisation framework that jointly performs motion correction and super resolution for cardiac image segmentations.
Experiments on two cardiac MR datasets show that the proposed framework achieves high performance, comparable to state-of-the-art super-resolution approaches.
arXiv Detail & Related papers (2021-07-08T15:14:00Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - HRINet: Alternative Supervision Network for High-resolution CT image
Interpolation [3.7966959476339035]
We propose a novel network, High Resolution Interpolation Network (HRINet), aiming at producing high-resolution CT images.
We combine the idea of ACAI and GANs, and propose a novel idea of alternative supervision method by applying supervised and unsupervised training.
Our experiments show the great improvement on 256 2 and 5122 images quantitatively and qualitatively.
arXiv Detail & Related papers (2020-02-11T15:09:42Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.