Objective Mismatch in Model-based Reinforcement Learning
- URL: http://arxiv.org/abs/2002.04523v3
- Date: Mon, 19 Apr 2021 03:02:59 GMT
- Title: Objective Mismatch in Model-based Reinforcement Learning
- Authors: Nathan Lambert, Brandon Amos, Omry Yadan, Roberto Calandra
- Abstract summary: Model-based reinforcement learning (MBRL) has been shown to be a powerful framework for data-efficiently learning control of continuous tasks.
We identify a fundamental issue of the standard MBRL framework -- what we call the objective mismatch issue.
We propose an initial method to mitigate the mismatch issue by re-weighting dynamics model training.
- Score: 14.92062504466269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based reinforcement learning (MBRL) has been shown to be a powerful
framework for data-efficiently learning control of continuous tasks. Recent
work in MBRL has mostly focused on using more advanced function approximators
and planning schemes, with little development of the general framework. In this
paper, we identify a fundamental issue of the standard MBRL framework -- what
we call the objective mismatch issue. Objective mismatch arises when one
objective is optimized in the hope that a second, often uncorrelated, metric
will also be optimized. In the context of MBRL, we characterize the objective
mismatch between training the forward dynamics model w.r.t.~the likelihood of
the one-step ahead prediction, and the overall goal of improving performance on
a downstream control task. For example, this issue can emerge with the
realization that dynamics models effective for a specific task do not
necessarily need to be globally accurate, and vice versa globally accurate
models might not be sufficiently accurate locally to obtain good control
performance on a specific task. In our experiments, we study this objective
mismatch issue and demonstrate that the likelihood of one-step ahead
predictions is not always correlated with control performance. This observation
highlights a critical limitation in the MBRL framework which will require
further research to be fully understood and addressed. We propose an initial
method to mitigate the mismatch issue by re-weighting dynamics model training.
Building on it, we conclude with a discussion about other potential directions
of research for addressing this issue.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - A Unified View on Solving Objective Mismatch in Model-Based Reinforcement Learning [10.154341066746975]
Model-based Reinforcement Learning (MBRL) aims to make agents more sample-efficient, adaptive, and explainable.
How to best learn the model is still an unresolved question.
arXiv Detail & Related papers (2023-10-10T01:58:38Z) - HarmonyDream: Task Harmonization Inside World Models [93.07314830304193]
Model-based reinforcement learning (MBRL) holds the promise of sample-efficient learning.
We propose a simple yet effective approach, HarmonyDream, which automatically adjusts loss coefficients to maintain task harmonization.
arXiv Detail & Related papers (2023-09-30T11:38:13Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Value Gradient weighted Model-Based Reinforcement Learning [28.366157882991565]
Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies.
VaGraM is a novel method for value-aware model learning.
arXiv Detail & Related papers (2022-04-04T13:28:31Z) - Model-Advantage Optimization for Model-Based Reinforcement Learning [41.13567626667456]
Model-based Reinforcement Learning (MBRL) algorithms have been traditionally designed with the goal of learning accurate dynamics of the environment.
Value-aware model learning, an alternative model-learning paradigm to maximum likelihood, proposes to inform model-learning through the value function of the learnt policy.
We propose a novel value-aware objective that is an upper bound on the absolute performance difference of a policy across two models.
arXiv Detail & Related papers (2021-06-26T20:01:28Z) - Discriminator Augmented Model-Based Reinforcement Learning [47.094522301093775]
It is common in practice for the learned model to be inaccurate, impairing planning and leading to poor performance.
This paper aims to improve planning with an importance sampling framework that accounts for discrepancy between the true and learned dynamics.
arXiv Detail & Related papers (2021-03-24T06:01:55Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.