Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective
- URL: http://arxiv.org/abs/2209.08466v3
- Date: Sat, 24 Jun 2023 19:05:46 GMT
- Title: Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective
- Authors: Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine and
Ruslan Salakhutdinov
- Abstract summary: We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
- Score: 142.36200080384145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While reinforcement learning (RL) methods that learn an internal model of the
environment have the potential to be more sample efficient than their
model-free counterparts, learning to model raw observations from high
dimensional sensors can be challenging. Prior work has addressed this challenge
by learning low-dimensional representation of observations through auxiliary
objectives, such as reconstruction or value prediction. However, the alignment
between these auxiliary objectives and the RL objective is often unclear. In
this work, we propose a single objective which jointly optimizes a latent-space
model and policy to achieve high returns while remaining self-consistent. This
objective is a lower bound on expected returns. Unlike prior bounds for
model-based RL on policy exploration or model guarantees, our bound is directly
on the overall RL objective. We demonstrate that the resulting algorithm
matches or improves the sample-efficiency of the best prior model-based and
model-free RL methods. While sample efficient methods typically are
computationally demanding, our method attains the performance of SAC in about
50% less wall-clock time.
Related papers
- Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
This paper investigates how to achieve sample-efficient exploration in continuous control tasks.
We introduce an RL algorithm that incorporates a predictive model and off-policy learning elements.
We derive an intrinsic reward without incurring parameters overhead.
arXiv Detail & Related papers (2024-03-31T11:39:11Z) - Simplified Temporal Consistency Reinforcement Learning [19.814047499837084]
We show that a simple representation learning approach relying on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL.
Our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.
arXiv Detail & Related papers (2023-06-15T19:37:43Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - The Virtues of Laziness in Model-based RL: A Unified Objective and
Algorithms [37.025378882978714]
We propose a novel approach to addressing two fundamental challenges in Model-based Reinforcement Learning (MBRL)
Our "lazy" method leverages a novel unified objective, Performance Difference via Advantage in Model, to capture the performance difference between the learned policy and expert policy.
We present two no-regret algorithms to optimize the proposed objective, and demonstrate their statistical and computational gains.
arXiv Detail & Related papers (2023-03-01T17:42:26Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Value Gradient weighted Model-Based Reinforcement Learning [28.366157882991565]
Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies.
VaGraM is a novel method for value-aware model learning.
arXiv Detail & Related papers (2022-04-04T13:28:31Z) - Mismatched No More: Joint Model-Policy Optimization for Model-Based RL [172.37829823752364]
We propose a single objective for jointly training the model and the policy, such that updates to either component increases a lower bound on expected return.
Our objective is a global lower bound on expected return, and this bound becomes tight under certain assumptions.
The resulting algorithm (MnM) is conceptually similar to a GAN.
arXiv Detail & Related papers (2021-10-06T13:43:27Z) - Model-Advantage Optimization for Model-Based Reinforcement Learning [41.13567626667456]
Model-based Reinforcement Learning (MBRL) algorithms have been traditionally designed with the goal of learning accurate dynamics of the environment.
Value-aware model learning, an alternative model-learning paradigm to maximum likelihood, proposes to inform model-learning through the value function of the learnt policy.
We propose a novel value-aware objective that is an upper bound on the absolute performance difference of a policy across two models.
arXiv Detail & Related papers (2021-06-26T20:01:28Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.