Plasmon Oscillations and de Broglie's Matter Waves Instabilities
- URL: http://arxiv.org/abs/2002.04690v4
- Date: Mon, 8 May 2023 16:39:14 GMT
- Title: Plasmon Oscillations and de Broglie's Matter Waves Instabilities
- Authors: M. Akbari-Moghanjoughi
- Abstract summary: We study the effect of matter-wave instability on electron beam transport with arbitrary degree of degeneracy.
The quantum charge screening and the chemical potential effects on the matter-wave formation and instabilities are discussed in detail.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this research we study the effect of matter-wave instability on electron
beam transport with arbitrary degree of degeneracy. Particular class of
solutions of the Schr\"{o}dinger-Poisson system is used to model the
electron-beam transport at constant speed. It is shown that such electron-beam
is described by a coupled driven pseudoforce system solution of which leads to
plasmon excitations with dual wave-particle character. The fundamental quantum
mechanical de Broglie relation is found to be due to the resonant interaction
of particle-like plasmon excitation branch with the electron beam drift. We
further obtain a generalized double lengthscale de Broglie wave-particle
relation through which various beam-plasmon instability is studied in this
model. The quantum charge screening and the chemical potential effects on the
matter-wave formation and instabilities are discussed in detail and the
well-known Aharonov-Bohm effect is revisited in current quantum hydrodynamic
model. Current research may further illuminate the origin of matter-wave in
quantum mechanics and lead to clear understanding of novel wave-particle
interactions.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Deterministic Quantum Field Trajectories and Macroscopic Effects [0.0]
The root to macroscopic quantum effects is revealed based on the quasiparticle model of collective excitations in an arbitrary degenerate electron gas.
It is remarked that any quantum many body system composed of large number of interacting particles acts as a dual arm device controlling the microscopic single particle effects with one hand and the macroscopic phenomena with the other.
arXiv Detail & Related papers (2023-11-16T06:23:09Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Partition of Two Interacting Electrons by a Potential Barrier [0.0]
We theoretically study the partition and collision of two interacting hot electrons at a potential barrier in the quantum Hall regime.
We predict their kinetic energy change by their Coulomb interaction during the scattering delay time inside the barrier.
The energy change results in characteristic deviation of the partition probabilities from the noninteracting case.
arXiv Detail & Related papers (2022-07-04T15:08:44Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum Interference and Phase Mixing in Multistream Plasmas [0.0]
The kinetic corrected Schr"odinger-Poisson model is used to obtain the pseudoforce system.
The noninteracting stream model is used to investigate the quantum electron beam interference and electron fluid Aharonov-Bohm effects.
The model is further extended to interacting two-stream quantum fluid model in order to investigate the orbital quasiparticle velocity, acceleration and streaming power.
arXiv Detail & Related papers (2021-02-11T08:00:06Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Resonant Interaction of Modulation-correlated Quantum Electron
Wavepackets with Bound Electron States [1.5834272714102895]
FEBERI is the resonant inelastic interaction of periodically density-bunched free electrons with a quantum two level system.
We present a comprehensive relativistic quantum mechanical theory for this interaction in a model in which the electrons are represented as quantum electron wavepackets (QEW)
arXiv Detail & Related papers (2020-10-29T17:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.