Forecasting adverse surgical events using self-supervised transfer
learning for physiological signals
- URL: http://arxiv.org/abs/2002.04770v2
- Date: Thu, 21 Jan 2021 21:27:17 GMT
- Title: Forecasting adverse surgical events using self-supervised transfer
learning for physiological signals
- Authors: Hugh Chen, Scott Lundberg, Gabe Erion, Jerry H. Kim, Su-In Lee
- Abstract summary: We present a transferable embedding method (i.e., a method to transform time series signals into input features for predictive machine learning models) named PHASE.
We evaluate PHASE on minute-by-minute EHR data of more than 50,000 surgeries from two operating room (OR) datasets and patient stays in an intensive care unit (ICU) dataset.
In a transfer learning setting where we train embedding models in one dataset then embed signals and predict adverse events in unseen data, PHASE achieves significantly higher prediction accuracy at lower computational cost compared to conventional approaches.
- Score: 7.262231066394781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hundreds of millions of surgical procedures take place annually across the
world, which generate a prevalent type of electronic health record (EHR) data
comprising time series physiological signals. Here, we present a transferable
embedding method (i.e., a method to transform time series signals into input
features for predictive machine learning models) named PHASE (PHysiologicAl
Signal Embeddings) that enables us to more accurately forecast adverse surgical
outcomes based on physiological signals. We evaluate PHASE on minute-by-minute
EHR data of more than 50,000 surgeries from two operating room (OR) datasets
and patient stays in an intensive care unit (ICU) dataset. PHASE outperforms
other state-of-the-art approaches, such as long-short term memory networks
trained on raw data and gradient boosted trees trained on handcrafted features,
in predicting five distinct outcomes: hypoxemia, hypocapnia, hypotension,
hypertension, and phenylephrine administration. In a transfer learning setting
where we train embedding models in one dataset then embed signals and predict
adverse events in unseen data, PHASE achieves significantly higher prediction
accuracy at lower computational cost compared to conventional approaches.
Finally, given the importance of understanding models in clinical applications
we demonstrate that PHASE is explainable and validate our predictive models
using local feature attribution methods.
Related papers
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
We propose a graph-transformer-based network to handle heterogeneous clinical data.
We show the benefit of our pre-training method in a self-supervised and a transfer learning setting.
arXiv Detail & Related papers (2022-07-21T16:59:09Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - Sequential Diagnosis Prediction with Transformer and Ontological
Representation [35.88195694025553]
We propose an end-to-end robust transformer-based model called SETOR to handle irregular intervals between a patient's visits with admitted timestamps and length of stay in each visit.
Experiments conducted on two real-world healthcare datasets show that, our sequential diagnoses prediction model SETOR achieves better predictive results than previous state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-07T13:09:55Z) - Synthesizing time-series wound prognosis factors from electronic medical
records using generative adversarial networks [0.0]
Time series medical generative adversarial networks (GANs) were developed to generate synthetic wound prognosis factors.
Conditional training strategies were utilized to enhance training and generate classified data in terms of healing or non-healing.
arXiv Detail & Related papers (2021-05-03T20:26:48Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
We present a temporal deep learning model to perform bidirectional representation learning on EHR sequences to predict depression.
The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model.
arXiv Detail & Related papers (2020-09-26T17:56:37Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.