Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models
- URL: http://arxiv.org/abs/2406.13942v1
- Date: Thu, 20 Jun 2024 02:20:23 GMT
- Title: Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models
- Authors: Yuan Zhong, Xiaochen Wang, Jiaqi Wang, Xiaokun Zhang, Yaqing Wang, Mengdi Huai, Cao Xiao, Fenglong Ma,
- Abstract summary: We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
- Score: 69.06149482021071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing electronic health records (EHR) data has become a preferred strategy to address data scarcity, improve data quality, and model fairness in healthcare. However, existing approaches for EHR data generation predominantly rely on state-of-the-art generative techniques like generative adversarial networks, variational autoencoders, and language models. These methods typically replicate input visits, resulting in inadequate modeling of temporal dependencies between visits and overlooking the generation of time information, a crucial element in EHR data. Moreover, their ability to learn visit representations is limited due to simple linear mapping functions, thus compromising generation quality. To address these limitations, we propose a novel EHR data generation model called EHRPD. It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation. To enhance generation quality and diversity, we introduce a novel time-aware visit embedding module and a pioneering predictive denoising diffusion probabilistic model (PDDPM). Additionally, we devise a predictive U-Net (PU-Net) to optimize P-DDPM.We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives. The experimental results demonstrate the efficacy and utility of the proposed EHRPD in addressing the aforementioned limitations and advancing EHR data generation.
Related papers
- Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRs are a pivotal data source that enables numerous applications in computational medicine, e.g., disease progression prediction, clinical trial design, and health economics and outcomes research.
Despite wide usability, their sensitive nature raises privacy and confidentially concerns, which limit potential use cases.
To tackle these challenges, we explore the use of generative models to synthesize artificial, yet realistic EHRs.
arXiv Detail & Related papers (2024-04-18T16:50:46Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - IGNITE: Individualized GeNeration of Imputations in Time-series
Electronic health records [7.451873794596469]
We propose a novel deep-learning model that learns the underlying patient dynamics to generate personalized values conditioning on an individual's demographic characteristics and treatments.
Our proposed model, IGNITE, utilise a conditional dual-variational autoencoder augmented with dual-stage attention to generate missing values for an individual.
We show that IGNITE outperforms state-of-the-art approaches in missing data reconstruction and task prediction.
arXiv Detail & Related papers (2024-01-09T07:57:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - MedDiff: Generating Electronic Health Records using Accelerated
Denoising Diffusion Model [5.677138915301383]
We present a novel generative model based on diffusion models that is the first successful application on electronic health records.
Our model proposes a mechanism to perform class-conditional sampling to preserve label information.
arXiv Detail & Related papers (2023-02-08T22:06:34Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
generative adversarial network (GAN) entitled EHR-M-GAN which synthesizes textitmixed-type timeseries EHR data.
We have validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients.
arXiv Detail & Related papers (2021-12-22T17:17:34Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.