Efficient Training of Deep Convolutional Neural Networks by Augmentation
in Embedding Space
- URL: http://arxiv.org/abs/2002.04776v1
- Date: Wed, 12 Feb 2020 03:26:33 GMT
- Title: Efficient Training of Deep Convolutional Neural Networks by Augmentation
in Embedding Space
- Authors: Mohammad Saeed Abrishami, Amir Erfan Eshratifar, David Eigen, Yanzhi
Wang, Shahin Nazarian, Massoud Pedram
- Abstract summary: In applications where data are scarce, transfer learning and data augmentation techniques are commonly used to improve the generalization of deep learning models.
Fine-tuning a transfer model with data augmentation in the raw input space has a high computational cost to run the full network for every augmented input.
We propose a method that replaces the augmentation in the raw input space with an approximate one that acts purely in the embedding space.
- Score: 24.847651341371684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in the field of artificial intelligence have been made
possible by deep neural networks. In applications where data are scarce,
transfer learning and data augmentation techniques are commonly used to improve
the generalization of deep learning models. However, fine-tuning a transfer
model with data augmentation in the raw input space has a high computational
cost to run the full network for every augmented input. This is particularly
critical when large models are implemented on embedded devices with limited
computational and energy resources. In this work, we propose a method that
replaces the augmentation in the raw input space with an approximate one that
acts purely in the embedding space. Our experimental results show that the
proposed method drastically reduces the computation, while the accuracy of
models is negligibly compromised.
Related papers
- Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
With the urge for smaller and more accurate devices, Deep Learning models became too heavy to deploy.
We propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations.
We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.
arXiv Detail & Related papers (2023-09-05T08:00:01Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
We propose a method for training a "compressible subspace" of neural networks that contains a fine-grained spectrum of models.
We present results for achieving arbitrarily fine-grained accuracy-efficiency trade-offs at inference time for structured and unstructured sparsity.
Our algorithm extends to quantization at variable bit widths, achieving accuracy on par with individually trained networks.
arXiv Detail & Related papers (2021-10-08T17:03:34Z) - Transformer Networks for Data Augmentation of Human Physical Activity
Recognition [61.303828551910634]
State of the art models like Recurrent Generative Adrial Networks (RGAN) are used to generate realistic synthetic data.
In this paper, transformer based generative adversarial networks which have global attention on data, are compared on PAMAP2 and Real World Human Activity Recognition data sets with RGAN.
arXiv Detail & Related papers (2021-09-02T16:47:29Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
We present Stored Embeddings for Efficient Reinforcement Learning (SEER)
SEER is a simple modification of existing off-policy deep reinforcement learning methods.
We show that SEER does not degrade the performance of RLizable agents while significantly saving computation and memory.
arXiv Detail & Related papers (2021-03-04T08:14:10Z) - Efficient Low-Latency Dynamic Licensing for Deep Neural Network
Deployment on Edge Devices [0.0]
We propose an architecture to solve deploying and processing deep neural networks on edge-devices.
Adopting this architecture allows low-latency model updates on devices.
arXiv Detail & Related papers (2021-02-24T09:36:39Z) - Deep Transfer Learning with Ridge Regression [7.843067454030999]
Deep models trained with massive amounts of data demonstrate promising generalisation ability on unseen data from relevant domains.
We address this issue by leveraging the low-rank property of learnt feature vectors produced from deep neural networks (DNNs) with the closed-form solution provided in kernel ridge regression (KRR)
Our method is successful on supervised and semi-supervised transfer learning tasks.
arXiv Detail & Related papers (2020-06-11T20:21:35Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
We explore the application of transfer learning techniques using training data generated from both high- and low-fidelity models.
In the former approach, a neural network model mapping the inputs to the outputs of interest is trained based on the low-fidelity data.
The high-fidelity data is then used to adapt the parameters of the upper layer(s) of the low-fidelity network, or train a simpler neural network to map the output of the low-fidelity network to that of the high-fidelity model.
arXiv Detail & Related papers (2020-02-11T15:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.