Transformer Networks for Data Augmentation of Human Physical Activity
Recognition
- URL: http://arxiv.org/abs/2109.01081v2
- Date: Sat, 4 Sep 2021 18:17:05 GMT
- Title: Transformer Networks for Data Augmentation of Human Physical Activity
Recognition
- Authors: Sandeep Ramachandra, Alexander Hoelzemann and Kristof Van Laerhoven
- Abstract summary: State of the art models like Recurrent Generative Adrial Networks (RGAN) are used to generate realistic synthetic data.
In this paper, transformer based generative adversarial networks which have global attention on data, are compared on PAMAP2 and Real World Human Activity Recognition data sets with RGAN.
- Score: 61.303828551910634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation is a widely used technique in classification to increase
data used in training. It improves generalization and reduces amount of
annotated human activity data needed for training which reduces labour and time
needed with the dataset. Sensor time-series data, unlike images, cannot be
augmented by computationally simple transformation algorithms. State of the art
models like Recurrent Generative Adversarial Networks (RGAN) are used to
generate realistic synthetic data. In this paper, transformer based generative
adversarial networks which have global attention on data, are compared on
PAMAP2 and Real World Human Activity Recognition data sets with RGAN. The newer
approach provides improvements in time and savings in computational resources
needed for data augmentation than previous approach.
Related papers
- Enhancing Activity Recognition After Stroke: Generative Adversarial Networks for Kinematic Data Augmentation [0.0]
Generalizability of machine learning models for wearable monitoring in stroke rehabilitation is often constrained by the limited scale and heterogeneity of available data.
Data augmentation addresses this challenge by adding computationally derived data to real data to enrich the variability represented in the training set.
This study employs Conditional Generative Adversarial Networks (cGANs) to create synthetic kinematic data from a publicly available dataset.
By training deep learning models on both synthetic and experimental data, we enhanced task classification accuracy: models incorporating synthetic data attained an overall accuracy of 80.0%, significantly higher than the 66.1% seen in models trained solely with real data
arXiv Detail & Related papers (2024-06-12T15:51:00Z) - A survey of synthetic data augmentation methods in computer vision [0.0]
This paper presents an extensive review of synthetic data augmentation techniques.
We focus on the important data generation and augmentation techniques, general scope of application and specific use-cases.
We provide a summary of common synthetic datasets for training computer vision models.
arXiv Detail & Related papers (2024-03-15T07:34:08Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model.
We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once.
arXiv Detail & Related papers (2022-02-21T10:34:41Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - Complex Wavelet SSIM based Image Data Augmentation [0.0]
We look at the MNIST handwritten dataset an image dataset used for digit recognition.
We take a detailed look into one of the most popular augmentation techniques used for this data set elastic deformation.
We propose to use a similarity measure called Complex Wavelet Structural Similarity Index Measure (CWSSIM) to selectively filter out the irrelevant data.
arXiv Detail & Related papers (2020-07-11T21:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.