Federated Matrix Factorization: Algorithm Design and Application to Data
Clustering
- URL: http://arxiv.org/abs/2002.04930v2
- Date: Fri, 30 Oct 2020 09:49:24 GMT
- Title: Federated Matrix Factorization: Algorithm Design and Application to Data
Clustering
- Authors: Shuai Wang and Tsung-Hui Chang
- Abstract summary: Recent demands on data privacy have called for federated learning (FL) as a new distributed learning paradigm in massive and heterogeneous networks.
We propose two new FedMF algorithms, namely FedMAvg and FedMGS, based on the model averaging and gradient sharing principles.
- Score: 18.917444528804463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent demands on data privacy have called for federated learning (FL) as a
new distributed learning paradigm in massive and heterogeneous networks.
Although many FL algorithms have been proposed, few of them have considered the
matrix factorization (MF) model, which is known to have a vast number of signal
processing and machine learning applications. Different from the existing FL
algorithms that are designed for smooth problems with single block of
variables, in federated MF (FedMF), one has to deal with challenging non-convex
and non-smooth problems (due to constraints or regularization) with two blocks
of variables. In this paper, we address the challenge by proposing two new
FedMF algorithms, namely, FedMAvg and FedMGS, based on the model averaging and
gradient sharing principles, respectively. Both FedMAvg and FedMGS adopt
multiple steps of local updates per communication round to speed up
convergence, and allow only a randomly sampled subset of clients to communicate
with the server for reducing the communication cost. Convergence analyses for
the two algorithms are respectively presented, which delineate the impacts of
data distribution, local update number, and partial client communication on the
algorithm performance. By focusing on a data clustering task, extensive
experiment results are presented to examine the practical performance of both
algorithms, as well as demonstrating their efficacy over the existing
distributed clustering algorithms.
Related papers
- Convergence Visualizer of Decentralized Federated Distillation with
Reduced Communication Costs [3.2098126952615442]
Federated learning (FL) achieves collaborative learning without the need for data sharing, thus preventing privacy leakage.
This study solves two unresolved challenges of CMFD: (1) communication cost reduction and (2) visualization of model convergence.
arXiv Detail & Related papers (2023-12-19T07:23:49Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices.
In this paper, we introduce a new FLAD FedADMM based protocol.
We show that FedADMM consistently outperforms all baseline methods in terms of communication efficiency.
arXiv Detail & Related papers (2022-04-07T15:58:33Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.