FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity
- URL: http://arxiv.org/abs/2204.03529v2
- Date: Fri, 8 Apr 2022 03:02:55 GMT
- Title: FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity
- Authors: Yonghai Gong, Yichuan Li, Nikolaos M. Freris
- Abstract summary: Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices.
In this paper, we introduce a new FLAD FedADMM based protocol.
We show that FedADMM consistently outperforms all baseline methods in terms of communication efficiency.
- Score: 4.2059108111562935
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Federated Learning (FL) is an emerging framework for distributed processing
of large data volumes by edge devices subject to limited communication
bandwidths, heterogeneity in data distributions and computational resources, as
well as privacy considerations. In this paper, we introduce a new FL protocol
termed FedADMM based on primal-dual optimization. The proposed method leverages
dual variables to tackle statistical heterogeneity, and accommodates system
heterogeneity by tolerating variable amount of work performed by clients.
FedADMM maintains identical communication costs per round as FedAvg/Prox, and
generalizes them via the augmented Lagrangian. A convergence proof is
established for nonconvex objectives, under no restrictions in terms of data
dissimilarity or number of participants per round of the algorithm. We
demonstrate the merits through extensive experiments on real datasets, under
both IID and non-IID data distributions across clients. FedADMM consistently
outperforms all baseline methods in terms of communication efficiency, with the
number of rounds needed to reach a prescribed accuracy reduced by up to 87%.
The algorithm effectively adapts to heterogeneous data distributions through
the use of dual variables, without the need for hyperparameter tuning, and its
advantages are more pronounced in large-scale systems.
Related papers
- Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
Mobile devices, including smartphones and laptops, generate decentralized and heterogeneous data.
Federated Learning (FL) offers a promising alternative by enabling collaborative training of a global model across decentralized devices without data sharing.
This paper focuses on data-dependent heterogeneity in FL and proposes a novel approach leveraging mean latent representations extracted from locally trained models.
arXiv Detail & Related papers (2024-11-10T04:03:09Z) - Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL) emerges as a pioneering distributed machine learning paradigm for the 6G Hyper-Connectivity.
Current FEEL algorithms struggle with non-independent and non-identically distributed (non-IID) data, leading to elevated communication costs and compromised model accuracy.
We introduce a clustered data sharing framework, mitigating data heterogeneity by selectively sharing partial data from cluster heads to trusted associates.
Experiments show that the proposed framework facilitates FEEL on non-IID datasets with faster convergence rate and higher model accuracy in a limited communication environment.
arXiv Detail & Related papers (2024-06-14T07:22:39Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Federated Expectation Maximization with heterogeneity mitigation and
variance reduction [0.0]
This paper introduces FedEM, which is the first extension of the Expectation Maximization (EM) algorithm for latent variable models.
To alleviate complexity of communication, FedEM appropriately defined complete data sufficient statistics.
Results presented support our theoretical findings as well as an application handles missing values imputation for biodiversity monitoring.
arXiv Detail & Related papers (2021-11-03T09:14:34Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Federated Matrix Factorization: Algorithm Design and Application to Data
Clustering [18.917444528804463]
Recent demands on data privacy have called for federated learning (FL) as a new distributed learning paradigm in massive and heterogeneous networks.
We propose two new FedMF algorithms, namely FedMAvg and FedMGS, based on the model averaging and gradient sharing principles.
arXiv Detail & Related papers (2020-02-12T11:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.