Using Automated Theorem Provers for Mistake Diagnosis in the Didactics
of Mathematics
- URL: http://arxiv.org/abs/2002.05083v1
- Date: Wed, 12 Feb 2020 16:36:59 GMT
- Title: Using Automated Theorem Provers for Mistake Diagnosis in the Didactics
of Mathematics
- Authors: Merlin Carl
- Abstract summary: The Diproche system is specifically adapted to the context of exercises for beginner's students similar to the Naproche system by Koepke, Schr"oder, Cramer and others.
We briefly describe the concept of such an Anti-ATP' and explain the basic techniques used in its implementation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Diproche system, an automated proof checker for natural language proofs
specifically adapted to the context of exercises for beginner's students
similar to the Naproche system by Koepke, Schr\"oder, Cramer and others, uses a
modification of an automated theorem prover which uses common formal fallacies
intead of sound deduction rules for mistake diagnosis. We briefly describe the
concept of such an `Anti-ATP' and explain the basic techniques used in its
implementation.
Related papers
- TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative
Language Models [68.65075559137608]
We propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proofs but also evaluates a generative LM's reasoning ability on formulas.
We gather trigonometric expressions and their reduced forms from the web, annotate the simplification process manually, and translate it into the Lean formal language system.
We develop an automatic generator based on Lean-Gym to create dataset splits of varying difficulties and distributions in order to thoroughly analyze the model's generalization ability.
arXiv Detail & Related papers (2023-10-16T08:42:39Z) - A Hybrid System for Systematic Generalization in Simple Arithmetic
Problems [70.91780996370326]
We propose a hybrid system capable of solving arithmetic problems that require compositional and systematic reasoning over sequences of symbols.
We show that the proposed system can accurately solve nested arithmetical expressions even when trained only on a subset including the simplest cases.
arXiv Detail & Related papers (2023-06-29T18:35:41Z) - A Rule Based Theorem Prover: an Introduction to Proofs in Secondary
Schools [0.0]
The introduction of automated deduction systems in secondary schools face several bottlenecks.
The dissonance between the outcomes of the geometry automated theorem provers and the normal practice of conjecturing and proving in schools is a major barrier to a wider use of such tools in an educational environment.
A lesson plan is presented, its goal is the introduction of formal demonstration of proving geometric theorems, trying to motivate students to that goal.
arXiv Detail & Related papers (2023-03-10T11:36:10Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - Learning Symbolic Rules for Reasoning in Quasi-Natural Language [74.96601852906328]
We build a rule-based system that can reason with natural language input but without the manual construction of rules.
We propose MetaQNL, a "Quasi-Natural" language that can express both formal logic and natural language sentences.
Our approach achieves state-of-the-art accuracy on multiple reasoning benchmarks.
arXiv Detail & Related papers (2021-11-23T17:49:00Z) - Refining Labelled Systems for Modal and Constructive Logics with
Applications [0.0]
This thesis serves as a means of transforming the semantics of a modal and/or constructive logic into an 'economical' proof system.
The refinement method connects two proof-theoretic paradigms: labelled and nested sequent calculi.
The introduced refined labelled calculi will be used to provide the first proof-search algorithms for deontic STIT logics.
arXiv Detail & Related papers (2021-07-30T08:27:15Z) - Neural Proof Nets [0.8379286663107844]
We propose a neural variant of proof nets based on Sinkhorn networks, which allows us to translate parsing as the problem of extracting primitive primitive permuting them into alignment.
We test our approach on AEThel, where it manages to correctly transcribe raw text sentences into proofs and terms of the linear lambda-calculus with an accuracy of as high as 70%.
arXiv Detail & Related papers (2020-09-26T22:48:47Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
This work is motivated by the possibility that a major limitation of automated theorem provers compared to humans might be addressable via generation from language models.
We present an automated prover and proof assistant, GPT-f, for the Metamath formalization language, and analyze its performance.
arXiv Detail & Related papers (2020-09-07T19:50:10Z) - Verification of ML Systems via Reparameterization [6.482926592121413]
We show how a probabilistic program can be automatically represented in a theorem prover.
We also prove that the null model used in a Bayesian hypothesis test satisfies a fairness criterion called demographic parity.
arXiv Detail & Related papers (2020-07-14T02:19:25Z) - Learning to Prove Theorems by Learning to Generate Theorems [71.46963489866596]
We learn a neural generator that automatically synthesizes theorems and proofs for the purpose of training a theorem prover.
Experiments on real-world tasks demonstrate that synthetic data from our approach improves the theorem prover.
arXiv Detail & Related papers (2020-02-17T16:06:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.