TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative
Language Models
- URL: http://arxiv.org/abs/2310.10180v2
- Date: Tue, 24 Oct 2023 15:17:56 GMT
- Title: TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative
Language Models
- Authors: Jing Xiong, Jianhao Shen, Ye Yuan, Haiming Wang, Yichun Yin, Zhengying
Liu, Lin Li, Zhijiang Guo, Qingxing Cao, Yinya Huang, Chuanyang Zheng,
Xiaodan Liang, Ming Zhang, Qun Liu
- Abstract summary: We propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proofs but also evaluates a generative LM's reasoning ability on formulas.
We gather trigonometric expressions and their reduced forms from the web, annotate the simplification process manually, and translate it into the Lean formal language system.
We develop an automatic generator based on Lean-Gym to create dataset splits of varying difficulties and distributions in order to thoroughly analyze the model's generalization ability.
- Score: 68.65075559137608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated theorem proving (ATP) has become an appealing domain for exploring
the reasoning ability of the recent successful generative language models.
However, current ATP benchmarks mainly focus on symbolic inference, but rarely
involve the understanding of complex number combination reasoning. In this
work, we propose TRIGO, an ATP benchmark that not only requires a model to
reduce a trigonometric expression with step-by-step proofs but also evaluates a
generative LM's reasoning ability on formulas and its capability to manipulate,
group, and factor number terms. We gather trigonometric expressions and their
reduced forms from the web, annotate the simplification process manually, and
translate it into the Lean formal language system. We then automatically
generate additional examples from the annotated samples to expand the dataset.
Furthermore, we develop an automatic generator based on Lean-Gym to create
dataset splits of varying difficulties and distributions in order to thoroughly
analyze the model's generalization ability. Our extensive experiments show our
proposed TRIGO poses a new challenge for advanced generative LM's including
GPT-4 which is pre-trained on a considerable amount of open-source formal
theorem-proving language data, and provide a new tool to study the generative
LM's ability on both formal and mathematical reasoning.
Related papers
- SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Slaves to the Law of Large Numbers: An Asymptotic Equipartition Property for Perplexity in Generative Language Models [0.0]
We show that the perplexity of any large text produced by a language model must converge to the average entropy of its token distributions.
This work has possible practical applications for understanding and improving AI detection" tools.
arXiv Detail & Related papers (2024-05-22T16:23:40Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARD is a framework that masters uniform synthesis of theorem and proof data of high quality and diversity.
We present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points.
We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data.
arXiv Detail & Related papers (2024-02-14T05:57:58Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Language Models Are Greedy Reasoners: A Systematic Formal Analysis of
Chain-of-Thought [10.524051272257614]
Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts.
We present a new synthetic question-answering dataset called PrOntoQA, where each example is generated as a synthetic world model.
This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis.
arXiv Detail & Related papers (2022-10-03T21:34:32Z) - Proof Artifact Co-training for Theorem Proving with Language Models [4.934817254755007]
PACT (bf Proof bf Artifact bf Co-bf Training) is a general methodology for extracting self-supervised data from kernel-level proof terms for co-training.
We instrument Lean with a neural theorem prover driven by a Transformer language model and show that PACT improves theorem proving success rate on a held-out suite of test theorems from 32% to 48%.
arXiv Detail & Related papers (2021-02-11T18:59:24Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
This work is motivated by the possibility that a major limitation of automated theorem provers compared to humans might be addressable via generation from language models.
We present an automated prover and proof assistant, GPT-f, for the Metamath formalization language, and analyze its performance.
arXiv Detail & Related papers (2020-09-07T19:50:10Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
We propose a framework for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models.
We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator.
arXiv Detail & Related papers (2020-09-01T23:45:42Z) - Closed-Form Expressions for Global and Local Interpretation of Tsetlin
Machines with Applications to Explaining High-Dimensional Data [7.05622249909585]
We propose closed-form expressions for understanding why a TM model makes a specific prediction (local interpretability)
We also introduce expressions for measuring the importance of feature value ranges for continuous features.
For both classification and regression, our evaluation show correspondence with SHAP as well as competitive prediction accuracy in comparison with XGBoost, Explainable Boosting Machines, and Neural Additive Models.
arXiv Detail & Related papers (2020-07-27T21:47:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.