Efficient Adaptive Experimental Design for Average Treatment Effect Estimation
- URL: http://arxiv.org/abs/2002.05308v6
- Date: Sun, 09 Feb 2025 13:46:57 GMT
- Title: Efficient Adaptive Experimental Design for Average Treatment Effect Estimation
- Authors: Masahiro Kato, Takuya Ishihara, Junya Honda, Yusuke Narita,
- Abstract summary: We study how to efficiently estimate average treatment effects (ATEs) using adaptive experiments.
In adaptive experiments, experimenters sequentially assign treatments to experimental units while updating treatment probabilities based on past data.
We develop nonparametric and nonasymptotic confidence intervals that are valid at any round of the proposed design.
- Score: 20.361745967568154
- License:
- Abstract: We study how to efficiently estimate average treatment effects (ATEs) using adaptive experiments. In adaptive experiments, experimenters sequentially assign treatments to experimental units while updating treatment assignment probabilities based on past data. We start by defining the efficient treatment-assignment probability, which minimizes the semiparametric efficiency bound for ATE estimation. Our proposed experimental design estimates and uses the efficient treatment-assignment probability to assign treatments. At the end of the proposed design, the experimenter estimates the ATE using a newly proposed Adaptive Augmented Inverse Probability Weighting (A2IPW) estimator. We show that the asymptotic variance of the A2IPW estimator using data from the proposed design achieves the minimized semiparametric efficiency bound. We also analyze the estimator's finite-sample properties and develop nonparametric and nonasymptotic confidence intervals that are valid at any round of the proposed design. These anytime valid confidence intervals allow us to conduct rate-optimal sequential hypothesis testing, allowing for early stopping and reducing necessary sample size.
Related papers
- Prediction-Guided Active Experiments [18.494123886098215]
We introduce a new framework for active experimentation, the Prediction-Guided Active Experiment (PGAE)
PGAE leverages predictions from an existing machine learning model to guide sampling and experimentation.
We show that PGAE remains efficient and attains the same semi-parametric bound under certain regularity assumptions.
arXiv Detail & Related papers (2024-11-18T20:16:24Z) - Optimal Adaptive Experimental Design for Estimating Treatment Effect [14.088972921434761]
This paper addresses the fundamental question of determining the optimal accuracy in estimating the treatment effect.
By incorporating the concept of doubly robust method into sequential experimental design, we frame the optimal estimation problem as an online bandit learning problem.
Using tools and ideas from both bandit algorithm design and adaptive statistical estimation, we propose a general low switching adaptive experiment framework.
arXiv Detail & Related papers (2024-10-07T23:22:51Z) - Adaptive-TMLE for the Average Treatment Effect based on Randomized Controlled Trial Augmented with Real-World Data [0.0]
We consider the problem of estimating the average treatment effect (ATE) when both randomized control trial (RCT) data and external real-world data (RWD) are available.
We introduce an adaptive targeted maximum likelihood estimation framework to estimate them.
arXiv Detail & Related papers (2024-05-12T07:10:26Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices [7.21848268647674]
This study designs an adaptive experiment for efficiently estimating average treatment effects (ATEs)
In each round of our adaptive experiment, an experimenter samples an experimental unit, assigns a treatment, and observes the corresponding outcome immediately.
At the end of the experiment, the experimenter estimates an ATE using the gathered samples.
arXiv Detail & Related papers (2024-03-06T10:24:44Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
We propose a framework that accommodates adjustment for any subset of information expressed by the covariates.
Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estorimator (DOPE) for efficient estimation of the average treatment effect (ATE)
Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.
arXiv Detail & Related papers (2024-02-20T13:02:51Z) - Adaptive Instrument Design for Indirect Experiments [48.815194906471405]
Unlike RCTs, indirect experiments estimate treatment effects by leveragingconditional instrumental variables.
In this paper we take the initial steps towards enhancing sample efficiency for indirect experiments by adaptively designing a data collection policy.
Our main contribution is a practical computational procedure that utilizes influence functions to search for an optimal data collection policy.
arXiv Detail & Related papers (2023-12-05T02:38:04Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems.
A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design.
This study presents a novel likelihood-free approach to the A-optimal experimental design.
arXiv Detail & Related papers (2023-06-30T12:40:43Z) - Improved Policy Evaluation for Randomized Trials of Algorithmic Resource
Allocation [54.72195809248172]
We present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT.
We prove theoretically that such an estimator is more accurate than common estimators based on sample means.
arXiv Detail & Related papers (2023-02-06T05:17:22Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.