A Double Machine Learning Approach to Combining Experimental and Observational Data
- URL: http://arxiv.org/abs/2307.01449v2
- Date: Wed, 3 Apr 2024 02:26:24 GMT
- Title: A Double Machine Learning Approach to Combining Experimental and Observational Data
- Authors: Harsh Parikh, Marco Morucci, Vittorio Orlandi, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky,
- Abstract summary: We propose a double machine learning approach to combine experimental and observational studies.
Our framework tests for violations of external validity and ignorability under milder assumptions.
- Score: 59.29868677652324
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Experimental and observational studies often lack validity due to untestable assumptions. We propose a double machine learning approach to combine experimental and observational studies, allowing practitioners to test for assumption violations and estimate treatment effects consistently. Our framework tests for violations of external validity and ignorability under milder assumptions. When only one of these assumptions is violated, we provide semiparametrically efficient treatment effect estimators. However, our no-free-lunch theorem highlights the necessity of accurately identifying the violated assumption for consistent treatment effect estimation. Through comparative analyses, we show our framework's superiority over existing data fusion methods. The practical utility of our approach is further exemplified by three real-world case studies, underscoring its potential for widespread application in empirical research.
Related papers
- B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Falsification of Internal and External Validity in Observational Studies
via Conditional Moment Restrictions [6.9347431938654465]
Given data from both an RCT and an observational study, assumptions on internal and external validity have an observable, testable implication.
We show that expressing these CMRs with respect to the causal effect, or "causal contrast", as opposed to individual counterfactual means, provides a more reliable falsification test.
arXiv Detail & Related papers (2023-01-30T18:16:16Z) - Adversarial De-confounding in Individualised Treatment Effects
Estimation [7.443477084710185]
De-confounding is a fundamental problem of individualised treatment effects estimation in observational studies.
This paper proposes disentangled representations with adversarial training to balance the confounders in the binary treatment setting for the ITE estimation.
arXiv Detail & Related papers (2022-10-19T13:11:33Z) - Distributionally Robust Causal Inference with Observational Data [4.8986598953553555]
We consider the estimation of average treatment effects in observational studies without the standard assumption of unconfoundedness.
We propose a new framework of robust causal inference under the general observational study setting with the possible existence of unobserved confounders.
arXiv Detail & Related papers (2022-10-15T16:02:33Z) - On Testability of the Front-Door Model via Verma Constraints [7.52579126252489]
Front-door criterion can be used to identify and compute causal effects despite unmeasured confounders.
Key assumptions -- the existence of a variable that fully mediates the effect of the treatment on the outcome, and which simultaneously does not suffer from similar issues of confounding -- are often deemed implausible.
We show that under mild conditions involving an auxiliary variable, the assumptions encoded in the front-door model may be tested via generalized equality constraints.
arXiv Detail & Related papers (2022-03-01T00:38:29Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Efficient Adaptive Experimental Design for Average Treatment Effect
Estimation [18.027128141189355]
We propose an algorithm for efficient experiments with estimators constructed from dependent samples.
To justify our proposed approach, we provide finite and infinite sample analyses.
arXiv Detail & Related papers (2020-02-13T02:04:17Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.