Improving Generalization of Reinforcement Learning with Minimax
Distributional Soft Actor-Critic
- URL: http://arxiv.org/abs/2002.05502v2
- Date: Wed, 30 Sep 2020 07:59:32 GMT
- Title: Improving Generalization of Reinforcement Learning with Minimax
Distributional Soft Actor-Critic
- Authors: Yangang Ren, Jingliang Duan, Shengbo Eben Li, Yang Guan and Qi Sun
- Abstract summary: This paper introduces the minimax formulation and distributional framework to improve the generalization ability of RL algorithms.
We implement our method on the decision-making tasks of autonomous vehicles at intersections and test the trained policy in distinct environments.
- Score: 11.601356612579641
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has achieved remarkable performance in numerous
sequential decision making and control tasks. However, a common problem is that
learned nearly optimal policy always overfits to the training environment and
may not be extended to situations never encountered during training. For
practical applications, the randomness of environment usually leads to some
devastating events, which should be the focus of safety-critical systems such
as autonomous driving. In this paper, we introduce the minimax formulation and
distributional framework to improve the generalization ability of RL algorithms
and develop the Minimax Distributional Soft Actor-Critic (Minimax DSAC)
algorithm. Minimax formulation aims to seek optimal policy considering the most
severe variations from environment, in which the protagonist policy maximizes
action-value function while the adversary policy tries to minimize it.
Distributional framework aims to learn a state-action return distribution, from
which we can model the risk of different returns explicitly, thereby
formulating a risk-averse protagonist policy and a risk-seeking adversarial
policy. We implement our method on the decision-making tasks of autonomous
vehicles at intersections and test the trained policy in distinct environments.
Results demonstrate that our method can greatly improve the generalization
ability of the protagonist agent to different environmental variations.
Related papers
- Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts [0.15889427269227555]
We develop an adaptive re-training algorithm inspired by evolutionary game theory (EGT)
ERPO shows faster policy adaptation, higher average rewards, and reduced computational costs in policy adaptation.
arXiv Detail & Related papers (2024-10-22T09:29:53Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - CAMEO: Curiosity Augmented Metropolis for Exploratory Optimal Policies [62.39667564455059]
We consider and study a distribution of optimal policies.
In experimental simulations we show that CAMEO indeed obtains policies that all solve classic control problems.
We further show that the different policies we sample present different risk profiles, corresponding to interesting practical applications in interpretability.
arXiv Detail & Related papers (2022-05-19T09:48:56Z) - Minimizing Safety Interference for Safe and Comfortable Automated
Driving with Distributional Reinforcement Learning [3.923354711049903]
We propose a distributional reinforcement learning framework to learn adaptive policies that can tune their level of conservativity at run-time based on the desired comfort and utility.
We show that our algorithm learns policies that can still drive reliable when the perception noise is two times higher than the training configuration for automated merging and crossing at occluded intersections.
arXiv Detail & Related papers (2021-07-15T13:36:55Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - DisCo RL: Distribution-Conditioned Reinforcement Learning for
General-Purpose Policies [116.12670064963625]
We develop an off-policy algorithm called distribution-conditioned reinforcement learning (DisCo RL) to efficiently learn contextual policies.
We evaluate DisCo RL on a variety of robot manipulation tasks and find that it significantly outperforms prior methods on tasks that require generalization to new goal distributions.
arXiv Detail & Related papers (2021-04-23T16:51:58Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Bayesian Robust Optimization for Imitation Learning [34.40385583372232]
Inverse reinforcement learning can enable generalization to new states by learning a parameterized reward function.
Existing safe imitation learning approaches based on IRL deal with this uncertainty using a maxmin framework.
BROIL provides a natural way to interpolate between return-maximizing and risk-minimizing behaviors.
arXiv Detail & Related papers (2020-07-24T01:52:11Z) - Learning Adaptive Exploration Strategies in Dynamic Environments Through
Informed Policy Regularization [100.72335252255989]
We study the problem of learning exploration-exploitation strategies that effectively adapt to dynamic environments.
We propose a novel algorithm that regularizes the training of an RNN-based policy using informed policies trained to maximize the reward in each task.
arXiv Detail & Related papers (2020-05-06T16:14:48Z) - Improving Robustness via Risk Averse Distributional Reinforcement
Learning [13.467017642143581]
Robustness is critical when the policies are trained in simulations instead of real world environment.
We propose a risk-aware algorithm to learn robust policies in order to bridge the gap between simulation training and real-world implementation.
arXiv Detail & Related papers (2020-05-01T20:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.