Reparameterized Policy Learning for Multimodal Trajectory Optimization
- URL: http://arxiv.org/abs/2307.10710v1
- Date: Thu, 20 Jul 2023 09:05:46 GMT
- Title: Reparameterized Policy Learning for Multimodal Trajectory Optimization
- Authors: Zhiao Huang, Litian Liang, Zhan Ling, Xuanlin Li, Chuang Gan, Hao Su
- Abstract summary: We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
- Score: 61.13228961771765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the challenge of parametrizing policies for reinforcement
learning (RL) in high-dimensional continuous action spaces. Our objective is to
develop a multimodal policy that overcomes limitations inherent in the
commonly-used Gaussian parameterization. To achieve this, we propose a
principled framework that models the continuous RL policy as a generative model
of optimal trajectories. By conditioning the policy on a latent variable, we
derive a novel variational bound as the optimization objective, which promotes
exploration of the environment. We then present a practical model-based RL
method, called Reparameterized Policy Gradient (RPG), which leverages the
multimodal policy parameterization and learned world model to achieve strong
exploration capabilities and high data efficiency. Empirical results
demonstrate that our method can help agents evade local optima in tasks with
dense rewards and solve challenging sparse-reward environments by incorporating
an object-centric intrinsic reward. Our method consistently outperforms
previous approaches across a range of tasks. Code and supplementary materials
are available on the project page https://haosulab.github.io/RPG/
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - A Conservative Approach for Few-Shot Transfer in Off-Dynamics Reinforcement Learning [3.1515473193934778]
Off-dynamics Reinforcement Learning seeks to transfer a policy from a source environment to a target environment characterized by distinct yet similar dynamics.
We propose an innovative approach inspired by recent advancements in Imitation Learning and conservative RL algorithms.
arXiv Detail & Related papers (2023-12-24T13:09:08Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
We propose Diverse Policy Optimization (DPO) to model the policies in structured action space as the energy-based models (EBM)
A novel and powerful generative model, GFlowNet, is introduced as the efficient, diverse EBM-based policy sampler.
Experiments on ATSC and Battle benchmarks demonstrate that DPO can efficiently discover surprisingly diverse policies.
arXiv Detail & Related papers (2023-02-23T10:48:09Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Multi-fidelity reinforcement learning framework for shape optimization [0.8258451067861933]
We introduce a controlled transfer learning framework that leverages a multi-fidelity simulation setting.
Our strategy is deployed for an airfoil shape optimization problem at high Reynolds numbers.
Our results demonstrate this framework's applicability to other scientific DRL scenarios.
arXiv Detail & Related papers (2022-02-22T20:44:04Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Learning Off-Policy with Online Planning [18.63424441772675]
We investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function.
We show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments.
arXiv Detail & Related papers (2020-08-23T16:18:44Z) - Ready Policy One: World Building Through Active Learning [35.358315617358976]
We introduce Ready Policy One (RP1), a framework that views Model-Based Reinforcement Learning as an active learning problem.
RP1 achieves this by utilizing a hybrid objective function, which crucially adapts during optimization.
We rigorously evaluate our method on a variety of continuous control tasks, and demonstrate statistically significant gains over existing approaches.
arXiv Detail & Related papers (2020-02-07T09:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.