CBAG: Conditional Biomedical Abstract Generation
- URL: http://arxiv.org/abs/2002.05637v1
- Date: Thu, 13 Feb 2020 17:11:33 GMT
- Title: CBAG: Conditional Biomedical Abstract Generation
- Authors: Justin Sybrandt, Ilya Safro
- Abstract summary: We propose a transformer-based conditional language model with a shallow encoder "condition" stack, and a deep "language model" stack of multi-headed attention blocks.
We generate biomedical abstracts given only a proposed title, an intended publication year, and a set of keywords.
- Score: 1.2633386045916442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical research papers use significantly different language and jargon
when compared to typical English text, which reduces the utility of pre-trained
NLP models in this domain. Meanwhile Medline, a database of biomedical
abstracts, introduces nearly a million new documents per-year. Applications
that could benefit from understanding this wealth of publicly available
information, such as scientific writing assistants, chat-bots, or descriptive
hypothesis generation systems, require new domain-centered approaches. A
conditional language model, one that learns the probability of words given some
a priori criteria, is a fundamental building block in many such applications.
We propose a transformer-based conditional language model with a shallow
encoder "condition" stack, and a deep "language model" stack of multi-headed
attention blocks. The condition stack encodes metadata used to alter the output
probability distribution of the language model stack. We sample this
distribution in order to generate biomedical abstracts given only a proposed
title, an intended publication year, and a set of keywords. Using typical
natural language generation metrics, we demonstrate that this proposed approach
is more capable of producing non-trivial relevant entities within the abstract
body than the 1.5B parameter GPT-2 language model.
Related papers
- Evaluation of Language Models in the Medical Context Under Resource-Constrained Settings [10.39989311209284]
We have conducted a comprehensive survey of language models in the medical field.
We evaluated a subset of these for medical text classification and conditional text generation.
The results reveal remarkable performance across the tasks and evaluated, underscoring the potential of certain models to contain medical knowledge.
arXiv Detail & Related papers (2024-06-24T12:52:02Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Enhancing Medical Specialty Assignment to Patients using NLP Techniques [0.0]
We propose an alternative approach that achieves superior performance while being computationally efficient.
Specifically, we utilize keywords to train a deep learning architecture that outperforms a language model pretrained on a large corpus of text.
Our results demonstrate that utilizing keywords for text classification significantly improves classification performance.
arXiv Detail & Related papers (2023-12-09T14:13:45Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for
Biomedical Entity Recognition [4.865221751784403]
This work contributes a data-centric paradigm for enriching the language representations of biomedical transformer-encoder LMs by extracting text sequences from the UMLS.
Preliminary results from experiments in the extension of pre-trained LMs as well as training from scratch show that this framework improves downstream performance on multiple biomedical and clinical Named Entity Recognition (NER) tasks.
arXiv Detail & Related papers (2023-07-20T18:08:34Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - BioMegatron: Larger Biomedical Domain Language Model [10.861369276414525]
We study and evaluate several factors that can affect performance on domain language applications.
We show consistent improvements on benchmarks with our larger BioMegatron model trained on a larger domain corpus.
arXiv Detail & Related papers (2020-10-12T22:46:10Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.