Language Generation from Brain Recordings
- URL: http://arxiv.org/abs/2311.09889v5
- Date: Mon, 11 Mar 2024 11:05:21 GMT
- Title: Language Generation from Brain Recordings
- Authors: Ziyi Ye, Qingyao Ai, Yiqun Liu, Maarten de Rijke, Min Zhang, Christina
Lioma, Tuukka Ruotsalo
- Abstract summary: We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
- Score: 68.97414452707103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating human language through non-invasive brain-computer interfaces
(BCIs) has the potential to unlock many applications, such as serving disabled
patients and improving communication. Currently, however, generating language
via BCIs has been previously successful only within a classification setup for
selecting pre-generated sentence continuation candidates with the most likely
cortical semantic representation. Inspired by recent research that revealed
associations between the brain and the large computational language models, we
propose a generative language BCI that utilizes the capacity of a large
language model (LLM) jointly with a semantic brain decoder to directly generate
language from functional magnetic resonance imaging (fMRI) input. The proposed
model can generate coherent language sequences aligned with the semantic
content of visual or auditory language stimuli perceived, without prior
knowledge of any pre-generated candidates. We compare the language generated
from the presented model with a random control, pre-generated language
selection approach, and a standard LLM, which generates common coherent text
solely based on the next word likelihood according to statistical language
training data. The proposed model is found to generate language that is more
aligned with semantic stimulus in response to which brain input is sampled. Our
findings demonstrate the potential and feasibility of employing BCIs in direct
language generation.
Related papers
- Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
Large Language Models (LLMs) have been shown to be effective models of the human language system.
In this work, we investigate the key architectural components driving the surprising alignment of untrained models.
arXiv Detail & Related papers (2024-06-21T12:54:03Z) - Language Reconstruction with Brain Predictive Coding from fMRI Data [28.217967547268216]
Theory of predictive coding suggests that human brain naturally engages in continuously predicting future word representations.
textscPredFT achieves current state-of-the-art decoding performance with a maximum BLEU-1 score of $27.8%$.
arXiv Detail & Related papers (2024-05-19T16:06:02Z) - Meta predictive learning model of languages in neural circuits [2.5690340428649328]
We propose a mean-field learning model within the predictive coding framework.
Our model reveals that most of the connections become deterministic after learning.
Our model provides a starting point to investigate the connection among brain computation, next-token prediction and general intelligence.
arXiv Detail & Related papers (2023-09-08T03:58:05Z) - Sequential Best-Arm Identification with Application to Brain-Computer
Interface [34.87975833920409]
A brain-computer interface (BCI) is a technology that enables direct communication between the brain and an external device or computer system.
An electroencephalogram (EEG) and event-related potential (ERP)-based speller system is a type of BCI that allows users to spell words without using a physical keyboard.
We propose a sequential top-two Thompson sampling (STTS) algorithm under the fixed-confidence setting and the fixed-budget setting.
arXiv Detail & Related papers (2023-05-17T18:49:44Z) - Communication Drives the Emergence of Language Universals in Neural
Agents: Evidence from the Word-order/Case-marking Trade-off [3.631024220680066]
We propose a new Neural-agent Language Learning and Communication framework (NeLLCom) where pairs of speaking and listening agents first learn a miniature language.
We succeed in replicating the trade-off with the new framework without hard-coding specific biases in the agents.
arXiv Detail & Related papers (2023-01-30T17:22:33Z) - LAMASSU: Streaming Language-Agnostic Multilingual Speech Recognition and
Translation Using Neural Transducers [71.76680102779765]
Automatic speech recognition (ASR) and speech translation (ST) can both use neural transducers as the model structure.
We propose LAMASSU, a streaming language-agnostic multilingual speech recognition and translation model using neural transducers.
arXiv Detail & Related papers (2022-11-05T04:03:55Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.