論文の概要: Learn to Expect the Unexpected: Probably Approximately Correct Domain
Generalization
- arxiv url: http://arxiv.org/abs/2002.05660v1
- Date: Thu, 13 Feb 2020 17:37:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 10:03:17.960122
- Title: Learn to Expect the Unexpected: Probably Approximately Correct Domain
Generalization
- Title(参考訳): 予想外の領域の一般化を期待することを学ぶ
- Authors: Vikas K. Garg, Adam Kalai, Katrina Ligett, and Zhiwei Steven Wu
- Abstract要約: ドメインの一般化は、トレーニングデータとテストデータが異なるデータドメインから来るときの機械学習の問題である。
データ分布にメタ分布が存在する領域をまたいで一般化する単純な理論モデルを提案する。
- 参考スコア(独自算出の注目度): 38.345670899258515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization is the problem of machine learning when the training
data and the test data come from different data domains. We present a simple
theoretical model of learning to generalize across domains in which there is a
meta-distribution over data distributions, and those data distributions may
even have different supports. In our model, the training data given to a
learning algorithm consists of multiple datasets each from a single domain
drawn in turn from the meta-distribution. We study this model in three
different problem settings---a multi-domain Massart noise setting, a decision
tree multi-dataset setting, and a feature selection setting, and find that
computationally efficient, polynomial-sample domain generalization is possible
in each. Experiments demonstrate that our feature selection algorithm indeed
ignores spurious correlations and improves generalization.
- Abstract(参考訳): ドメインの一般化は、トレーニングデータとテストデータが異なるデータドメインから来るときの機械学習の問題である。
本稿では,データ分布にメタ分散が存在する領域をまたいで一般化する学習の単純な理論モデルを提案する。
このモデルでは,学習アルゴリズムに与えられたトレーニングデータは,メタ分布から引き出された1つのドメインからそれぞれ複数のデータセットから構成される。
本研究では, このモデルについて, 多領域マスアート雑音設定, 決定木マルチデータセット設定, 特徴選択設定の3つの異なる問題設定で検討し, 計算効率のよい多項式サンプル領域の一般化が可能であることを確かめる。
実験により,特徴選択アルゴリズムはスプリアス相関を無視し,一般化を改善できることが示されている。
関連論文リスト
- Domain Adversarial Active Learning for Domain Generalization
Classification [8.003401798449337]
ドメイン一般化モデルは、ソースドメインデータからクロスドメイン知識を学び、未知のターゲットドメインの性能を改善することを目的としている。
近年の研究では、多種多様なソース・ドメイン・サンプルがドメインの一般化能力を高めることが示されている。
そこで本研究では,ドメイン一般化における分類タスクに対するDAAL(Domain-adversarial Active Learning)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-10T10:59:22Z) - Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
我々は、全人口の複数のセグメントにまたがってデータ分布が変化するシナリオに焦点を当てる。
そこで本研究では,各セグメントのモデル性能を改善するために,二段階多重ロバスト推定法を提案する。
本手法は,市販の機械学習モデルを用いて実装されるように設計されている。
論文 参考訳(メタデータ) (2024-02-21T22:01:10Z) - Multi-Domain Long-Tailed Learning by Augmenting Disentangled
Representations [80.76164484820818]
多くの現実世界の分類問題には、避けられない長い尾のクラスバランスの問題がある。
本稿では,この多領域長鎖学習問題について検討し,すべてのクラスとドメインにまたがってよく一般化されたモデルを作成することを目的とする。
TALLYは、選択的均衡サンプリング戦略に基づいて、ある例のセマンティック表現と別の例のドメイン関連ニュアンスを混合することでこれを達成している。
論文 参考訳(メタデータ) (2022-10-25T21:54:26Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
本稿では,事前特定ドメインラベルと一般化性能の関連性について検討する。
マルチドメイン一般化のための一般的なアプローチであるMulDEnsを導入し,ERMをベースとした深層アンサンブルバックボーンを用いた。
我々は、MulDEnsがデータセット固有の拡張戦略やトレーニングプロセスの調整を必要としないことを示す。
論文 参考訳(メタデータ) (2021-12-17T23:21:50Z) - Towards Data-Free Domain Generalization [12.269045654957765]
異なるソースデータドメインでトレーニングされたモデルに含まれる知識は、どのようにして単一のモデルにマージされるのか?
以前のドメインの一般化手法は、典型的にはソースドメインデータの使用に依存しており、プライベートな分散データには適さない。
DeKANは、利用可能な教師モデルからドメイン固有の知識を抽出し、融合し、ドメインシフトに頑健な学生モデルに変換するアプローチである。
論文 参考訳(メタデータ) (2021-10-09T11:44:05Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
ドメインの一般化は、モデルが未知の統計を持つ対象のドメインに一般化できるように、マルチドメインのソースデータの予測モデルを学ぶことを目的としている。
既存のアプローチのほとんどは、ソースデータがドメインとクラスの両方の観点からバランスよく調整されているという前提の下で開発されている。
本稿では,多領域ソースデータの分布の違いによるバイアスを軽減するために,損失の重み付けを適応的に学習する自己均衡型領域一般化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-31T03:17:54Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
ドメインの一般化は、異なるドメインと見えないドメインで堅牢に実行されるように機械学習モデルをトレーニングすることを目的としている。
一般的な領域一般化ベンチマークにおいて,最先端技術よりも分類精度が著しく向上したことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:02:57Z) - In Search of Lost Domain Generalization [25.43757332883202]
ドメインの一般化のためのテストベッドであるDomainBedを実装します。
DomainBedを用いて広範な実験を行い、慎重に実装すると、経験的リスク最小化が最先端のパフォーマンスを示すことを確かめる。
論文 参考訳(メタデータ) (2020-07-02T23:08:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。