Simple Interactive Image Segmentation using Label Propagation through
kNN graphs
- URL: http://arxiv.org/abs/2002.05708v1
- Date: Thu, 13 Feb 2020 18:50:21 GMT
- Title: Simple Interactive Image Segmentation using Label Propagation through
kNN graphs
- Authors: Fabricio Aparecido Breve
- Abstract summary: This paper proposes a new SSL graph-based interactive image segmentation approach, using undirected and unweighted kNN graphs.
It is simpler than many other techniques, but it still achieves classification accuracy in the image segmentation task.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many interactive image segmentation techniques are based on semi-supervised
learning. The user may label some pixels from each object and the SSL algorithm
will propagate the labels from the labeled to the unlabeled pixels, finding
object boundaries. This paper proposes a new SSL graph-based interactive image
segmentation approach, using undirected and unweighted kNN graphs, from which
the unlabeled nodes receive contributions from other nodes (either labeled or
unlabeled). It is simpler than many other techniques, but it still achieves
significant classification accuracy in the image segmentation task. Computer
simulations are performed using some real-world images, extracted from the
Microsoft GrabCut dataset. The segmentation results show the effectiveness of
the proposed approach.
Related papers
- Towards Open-Vocabulary Semantic Segmentation Without Semantic Labels [53.8817160001038]
We propose a novel method, PixelCLIP, to adapt the CLIP image encoder for pixel-level understanding.
To address the challenges of leveraging masks without semantic labels, we devise an online clustering algorithm.
PixelCLIP shows significant performance improvements over CLIP and competitive results compared to caption-supervised methods.
arXiv Detail & Related papers (2024-09-30T01:13:03Z) - Semi-supervised segmentation of land cover images using nonlinear
canonical correlation analysis with multiple features and t-SNE [1.7000283696243563]
Image segmentation is a clustering task whereby each pixel is assigned a cluster label.
In this work, by resorting to label only a small quantity of pixels, a new semi-supervised segmentation approach is proposed.
The proposed semi-supervised RBF-CCA algorithm has been implemented on several remotely sensed multispectral images.
arXiv Detail & Related papers (2024-01-22T17:56:07Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
This paper presents a simple but performant semi-supervised semantic segmentation approach, called CorrMatch.
We observe that the correlation maps not only enable clustering pixels of the same category easily but also contain good shape information.
We propose to conduct pixel propagation by modeling the pairwise similarities of pixels to spread the high-confidence pixels and dig out more.
Then, we perform region propagation to enhance the pseudo labels with accurate class-agnostic masks extracted from the correlation maps.
arXiv Detail & Related papers (2023-06-07T10:02:29Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN.
In particular, we formulate the annotator learning as a learning-to-learn problem.
We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images.
arXiv Detail & Related papers (2022-11-06T01:29:22Z) - One Weird Trick to Improve Your Semi-Weakly Supervised Semantic
Segmentation Model [8.388356030608886]
Semi-weakly supervised semantic segmentation (SWSSS) aims to train a model to identify objects in images based on a small number of images with pixel-level labels, and many more images with only image-level labels.
Most existing SWSSS algorithms extract pixel-level pseudo-labels from an image classifier - a very difficult task to do well.
We propose a method called prediction filtering, which instead of extracting pseudo-labels, just uses the classifier as a classifier.
Adding this simple post-processing method to baselines gives results competitive with or better than prior SWSSS algorithms.
arXiv Detail & Related papers (2022-05-02T21:46:41Z) - From Explanations to Segmentation: Using Explainable AI for Image
Segmentation [1.8581514902689347]
We build upon the advances of the Explainable AI (XAI) community and extract a pixel-wise binary segmentation.
We show that we achieve similar results compared to an established U-Net segmentation architecture.
The proposed method can be trained in a weakly supervised fashion, as the training samples must be only labeled on image-level.
arXiv Detail & Related papers (2022-02-01T10:26:10Z) - Maximize the Exploration of Congeneric Semantics for Weakly Supervised
Semantic Segmentation [27.155133686127474]
We construct a graph neural network (P-GNN) based on the self-detected patches from different images that contain the same class labels.
We conduct experiments on the popular PASCAL VOC 2012 benchmarks, and our model yields state-of-the-art performance.
arXiv Detail & Related papers (2021-10-08T08:59:16Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision [12.284208932393073]
This paper presents a novel procedure for producing semantic segmentation from images given some point level annotations.
We propose training a CNN that is normally fully supervised using our pseudo labels in place of ground truth labels.
Our method achieves state of the art results for point supervised semantic segmentation on the PASCAL VOC 2012 dataset citeeveringham2010pascal, even outperforming state of the art methods for stronger bounding box and squiggle supervision.
arXiv Detail & Related papers (2020-07-10T21:25:27Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - RGB-based Semantic Segmentation Using Self-Supervised Depth Pre-Training [77.62171090230986]
We propose an easily scalable and self-supervised technique that can be used to pre-train any semantic RGB segmentation method.
In particular, our pre-training approach makes use of automatically generated labels that can be obtained using depth sensors.
We show how our proposed self-supervised pre-training with HN-labels can be used to replace ImageNet pre-training.
arXiv Detail & Related papers (2020-02-06T11:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.