From Explanations to Segmentation: Using Explainable AI for Image
Segmentation
- URL: http://arxiv.org/abs/2202.00315v1
- Date: Tue, 1 Feb 2022 10:26:10 GMT
- Title: From Explanations to Segmentation: Using Explainable AI for Image
Segmentation
- Authors: Clemens Seibold, Johannes K\"unzel, Anna Hilsmann, Peter Eisert
- Abstract summary: We build upon the advances of the Explainable AI (XAI) community and extract a pixel-wise binary segmentation.
We show that we achieve similar results compared to an established U-Net segmentation architecture.
The proposed method can be trained in a weakly supervised fashion, as the training samples must be only labeled on image-level.
- Score: 1.8581514902689347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The new era of image segmentation leveraging the power of Deep Neural Nets
(DNNs) comes with a price tag: to train a neural network for pixel-wise
segmentation, a large amount of training samples has to be manually labeled on
pixel-precision. In this work, we address this by following an indirect
solution. We build upon the advances of the Explainable AI (XAI) community and
extract a pixel-wise binary segmentation from the output of the Layer-wise
Relevance Propagation (LRP) explaining the decision of a classification
network. We show that we achieve similar results compared to an established
U-Net segmentation architecture, while the generation of the training data is
significantly simplified. The proposed method can be trained in a weakly
supervised fashion, as the training samples must be only labeled on
image-level, at the same time enabling the output of a segmentation mask. This
makes it especially applicable to a wider range of real applications where
tedious pixel-level labelling is often not possible.
Related papers
- Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
We propose a method to enable the end-to-end pre-training for image segmentation models based on classification datasets.
The proposed method leverages a weighted segmentation learning procedure to pre-train the segmentation network en masse.
Experiment results show that, with ImageNet accompanied by PSSL as the source dataset, the proposed end-to-end pre-training strategy successfully boosts the performance of various segmentation models.
arXiv Detail & Related papers (2022-07-04T13:02:32Z) - Weakly-supervised fire segmentation by visualizing intermediate CNN
layers [82.75113406937194]
Fire localization in images and videos is an important step for an autonomous system to combat fire incidents.
We consider weakly supervised segmentation of fire in images, in which only image labels are used to train the network.
We show that in the case of fire segmentation, which is a binary segmentation problem, the mean value of features in a mid-layer of classification CNN can perform better than conventional Class Activation Mapping (CAM) method.
arXiv Detail & Related papers (2021-11-16T11:56:28Z) - Maximize the Exploration of Congeneric Semantics for Weakly Supervised
Semantic Segmentation [27.155133686127474]
We construct a graph neural network (P-GNN) based on the self-detected patches from different images that contain the same class labels.
We conduct experiments on the popular PASCAL VOC 2012 benchmarks, and our model yields state-of-the-art performance.
arXiv Detail & Related papers (2021-10-08T08:59:16Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Automatic Image Labelling at Pixel Level [21.59653873040243]
We propose an interesting learning approach to generate pixel-level image labellings automatically.
A Guided Filter Network (GFN) is first developed to learn the segmentation knowledge from a source domain.
GFN then transfers such segmentation knowledge to generate coarse object masks in the target domain.
arXiv Detail & Related papers (2020-07-15T00:34:11Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z) - RGB-based Semantic Segmentation Using Self-Supervised Depth Pre-Training [77.62171090230986]
We propose an easily scalable and self-supervised technique that can be used to pre-train any semantic RGB segmentation method.
In particular, our pre-training approach makes use of automatically generated labels that can be obtained using depth sensors.
We show how our proposed self-supervised pre-training with HN-labels can be used to replace ImageNet pre-training.
arXiv Detail & Related papers (2020-02-06T11:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.