Automatically Discovering and Learning New Visual Categories with
Ranking Statistics
- URL: http://arxiv.org/abs/2002.05714v1
- Date: Thu, 13 Feb 2020 18:53:32 GMT
- Title: Automatically Discovering and Learning New Visual Categories with
Ranking Statistics
- Authors: Kai Han and Sylvestre-Alvise Rebuffi and Sebastien Ehrhardt and Andrea
Vedaldi and Andrew Zisserman
- Abstract summary: We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
- Score: 145.89790963544314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the problem of discovering novel classes in an image collection
given labelled examples of other classes. This setting is similar to
semi-supervised learning, but significantly harder because there are no
labelled examples for the new classes. The challenge, then, is to leverage the
information contained in the labelled images in order to learn a
general-purpose clustering model and use the latter to identify the new classes
in the unlabelled data. In this work we address this problem by combining three
ideas: (1) we suggest that the common approach of bootstrapping an image
representation using the labeled data only introduces an unwanted bias, and
that this can be avoided by using self-supervised learning to train the
representation from scratch on the union of labelled and unlabelled data; (2)
we use rank statistics to transfer the model's knowledge of the labelled
classes to the problem of clustering the unlabelled images; and, (3) we train
the data representation by optimizing a joint objective function on the
labelled and unlabelled subsets of the data, improving both the supervised
classification of the labelled data, and the clustering of the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform
current methods for novel category discovery by a significant margin.
Related papers
- Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning [44.91863420044712]
In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data.
We introduce 1) the adaptive synchronizing marginal loss which imposes class-specific negative margins to alleviate the model bias towards seen classes, and 2) the pseudo-label contrastive clustering which exploits pseudo-labels predicted by the model to group unlabeled data from the same category together.
Our method balances the learning pace between seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset.
arXiv Detail & Related papers (2023-09-21T09:44:39Z) - Learning Semi-supervised Gaussian Mixture Models for Generalized
Category Discovery [36.01459228175808]
We propose an EM-like framework that alternates between representation learning and class number estimation.
We evaluate our framework on both generic image classification datasets and challenging fine-grained object recognition datasets.
arXiv Detail & Related papers (2023-05-10T13:47:38Z) - XCon: Learning with Experts for Fine-grained Category Discovery [4.787507865427207]
We present a novel method called Expert-Contrastive Learning (XCon) to help the model to mine useful information from the images.
Experiments on fine-grained datasets show a clear improved performance over the previous best methods, indicating the effectiveness of our method.
arXiv Detail & Related papers (2022-08-03T08:03:12Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
It uses labeled information to guide the learning of unlabeled instances.
It achieves competitive segmentation accuracy and significantly improves the mIoU by +7$%$ compared to previous approaches.
arXiv Detail & Related papers (2021-12-28T06:48:03Z) - AutoNovel: Automatically Discovering and Learning Novel Visual
Categories [138.80332861066287]
We present a new approach called AutoNovel to tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We evaluate AutoNovel on standard classification benchmarks and substantially outperform current methods for novel category discovery.
arXiv Detail & Related papers (2021-06-29T11:12:16Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
We first introduce a feature alignment objective between labeled and unlabeled data to capture potentially similar image pairs.
MITrans is shown to be a powerful knowledge module for further progressive refining features of unlabeled data.
Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks.
arXiv Detail & Related papers (2021-06-29T02:48:45Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
Person re-identification (re-ID) is an important topic in computer vision.
This paper studies the unsupervised setting of re-ID, which does not require any labeled information.
Experiments on two image-based and video-based datasets demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2020-04-07T17:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.