Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning
- URL: http://arxiv.org/abs/2309.11930v2
- Date: Wed, 17 Apr 2024 12:27:25 GMT
- Title: Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning
- Authors: Bo Ye, Kai Gan, Tong Wei, Min-Ling Zhang,
- Abstract summary: In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data.
We introduce 1) the adaptive synchronizing marginal loss which imposes class-specific negative margins to alleviate the model bias towards seen classes, and 2) the pseudo-label contrastive clustering which exploits pseudo-labels predicted by the model to group unlabeled data from the same category together.
Our method balances the learning pace between seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset.
- Score: 44.91863420044712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data while maintaining performance on seen categories from labeled data. The central challenge is the substantial learning gap between seen and novel categories, as the model learns the former faster due to accurate supervisory information. Moreover, capturing the semantics of unlabeled novel category samples is also challenging due to the missing label information. To address the above issues, we introduce 1) the adaptive synchronizing marginal loss which imposes class-specific negative margins to alleviate the model bias towards seen classes, and 2) the pseudo-label contrastive clustering which exploits pseudo-labels predicted by the model to group unlabeled data from the same category together in the output space. Extensive experiments on benchmark datasets demonstrate that previous approaches may significantly hinder novel class learning, whereas our method strikingly balances the learning pace between seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset. Importantly, we find that fine-tuning the self-supervised pre-trained model significantly boosts the performance, which is overlooked in prior literature. Our code is available at https://github.com/yebo0216best/LPS-main.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning.
We propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL)
Our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition.
arXiv Detail & Related papers (2024-01-24T09:39:45Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - AutoNovel: Automatically Discovering and Learning Novel Visual
Categories [138.80332861066287]
We present a new approach called AutoNovel to tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We evaluate AutoNovel on standard classification benchmarks and substantially outperform current methods for novel category discovery.
arXiv Detail & Related papers (2021-06-29T11:12:16Z) - Open-World Semi-Supervised Learning [66.90703597468377]
We introduce a new open-world semi-supervised learning setting in which the model is required to recognize previously seen classes.
We propose ORCA, an approach that learns to simultaneously classify and cluster the data.
We demonstrate that ORCA accurately discovers novel classes and assigns samples to previously seen classes on benchmark image classification datasets.
arXiv Detail & Related papers (2021-02-06T07:11:07Z) - Boosting the Performance of Semi-Supervised Learning with Unsupervised
Clustering [10.033658645311188]
We show that ignoring labels altogether for whole epochs intermittently during training can significantly improve performance in the small sample regime.
We demonstrate our method's efficacy in boosting several state-of-the-art SSL algorithms.
arXiv Detail & Related papers (2020-12-01T14:19:14Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
arXiv Detail & Related papers (2020-02-13T18:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.