論文の概要: Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities
- arxiv url: http://arxiv.org/abs/2002.05777v5
- Date: Sat, 9 Jul 2022 09:28:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 13:03:23.500990
- Title: Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities
- Title(参考訳): 半構造化分布回帰-任意深部ニューラルネットワークとデータモーダリティによる構造化付加モデルの拡張
- Authors: David R\"ugamer, Chris Kolb, Nadja Klein
- Abstract要約: 本稿では、構造化回帰モデルとディープニューラルネットワークを統合ネットワークアーキテクチャに結合する一般的なフレームワークを提案する。
数値実験において,本フレームワークの有効性を実証し,ベンチマークや実世界の応用において,そのメリットを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combining additive models and neural networks allows to broaden the scope of
statistical regression and extend deep learning-based approaches by
interpretable structured additive predictors at the same time. Existing
attempts uniting the two modeling approaches are, however, limited to very
specific combinations and, more importantly, involve an identifiability issue.
As a consequence, interpretability and stable estimation are typically lost. We
propose a general framework to combine structured regression models and deep
neural networks into a unifying network architecture. To overcome the inherent
identifiability issues between different model parts, we construct an
orthogonalization cell that projects the deep neural network into the
orthogonal complement of the statistical model predictor. This enables proper
estimation of structured model parts and thereby interpretability. We
demonstrate the framework's efficacy in numerical experiments and illustrate
its special merits in benchmarks and real-world applications.
- Abstract(参考訳): 加法モデルとニューラルネットワークを組み合わせることで、統計的回帰の範囲を広げ、構造化された加法予測器を同時に解釈することでディープラーニングベースのアプローチを拡張することができる。
しかし、2つのモデリングアプローチを統合する既存の試みは、非常に特定の組み合わせに限定されており、さらに重要なことは、識別可能性の問題である。
その結果、解釈可能性と安定した推定は通常失われる。
本稿では、構造化回帰モデルとディープニューラルネットワークを統合ネットワークアーキテクチャに結合する一般的なフレームワークを提案する。
異なるモデル部品間の固有の識別可能性の問題を克服するため,我々は,深部ニューラルネットワークを統計モデル予測器の直交補体に投射する直交化セルを構築した。
これにより、構造化されたモデル部分の適切な推定と解釈が可能になる。
数値実験におけるフレームワークの有効性を実証し,ベンチマークや実世界のアプリケーションにおいて,その特長を説明する。
関連論文リスト
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - Back to Bayesics: Uncovering Human Mobility Distributions and Anomalies with an Integrated Statistical and Neural Framework [14.899157568336731]
DeepBayesicは、ベイズ原理とディープニューラルネットワークを統合し、基盤となる分布をモデル化する新しいフレームワークである。
我々は,いくつかのモビリティデータセットに対するアプローチを評価し,最先端の異常検出手法の大幅な改善を実証した。
論文 参考訳(メタデータ) (2024-10-01T19:02:06Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - A New PHO-rmula for Improved Performance of Semi-Structured Networks [0.0]
本研究では,SSNにおけるモデルコンポーネントのコントリビューションを適切に識別する手法が,最適ネットワーク推定に繋がることを示す。
モデルコンポーネントの識別性を保証し,予測品質を向上する非侵襲的ポストホック化(PHO)を提案する。
我々の理論的な知見は、数値実験、ベンチマーク比較、およびCOVID-19感染症に対する現実の応用によって裏付けられている。
論文 参考訳(メタデータ) (2023-06-01T10:23:28Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Semi-Structured Deep Piecewise Exponential Models [2.7728956081909346]
本稿では,統計学の先進的な概念と深層学習を組み合わせた生存分析のための多目的フレームワークを提案する。
この枠組みを用いてアルツハイマー病の進行を予測することによって概念実証を行う。
論文 参考訳(メタデータ) (2020-11-11T14:41:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
専門的なニューラルネットワークアーキテクチャを用いたシミュレーションベース推論の最近の進歩は、ベイズ近似計算の多くの過去の問題を回避している。
本稿では,アモータイズされたベイズパラメータの推定とモデル比較について概説する。
論文 参考訳(メタデータ) (2020-05-08T08:12:15Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
混合メンバシップブロックモデル(MMSB)は、コミュニティ検出とネットワーク生成のための一般的なフレームワークである。
最近開発された統計リレーショナル学習モデルであるヒンジロスマルコフ確率場(HL-MRF)を用いた柔軟なMMSBモデル、textitStruct-MMSBを提案する。
我々のモデルは、観測された特徴と会員分布の複雑な組み合わせとして符号化された有意義な潜伏変数を用いて、実世界のネットワークにおける潜伏特性を学習することができる。
論文 参考訳(メタデータ) (2020-02-21T19:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。