A Data Efficient End-To-End Spoken Language Understanding Architecture
- URL: http://arxiv.org/abs/2002.05955v1
- Date: Fri, 14 Feb 2020 10:24:42 GMT
- Title: A Data Efficient End-To-End Spoken Language Understanding Architecture
- Authors: Marco Dinarelli, Nikita Kapoor, Bassam Jabaian, and Laurent Besacier
- Abstract summary: We introduce a data efficient system which is trained end-to-end, with no additional, pre-trained external module.
The proposed model achieves a reasonable size and competitive results with respect to state-of-the-art while using a small training dataset.
- Score: 22.823732899634518
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: End-to-end architectures have been recently proposed for spoken language
understanding (SLU) and semantic parsing. Based on a large amount of data,
those models learn jointly acoustic and linguistic-sequential features. Such
architectures give very good results in the context of domain, intent and slot
detection, their application in a more complex semantic chunking and tagging
task is less easy. For that, in many cases, models are combined with an
external language model to enhance their performance.
In this paper we introduce a data efficient system which is trained
end-to-end, with no additional, pre-trained external module. One key feature of
our approach is an incremental training procedure where acoustic, language and
semantic models are trained sequentially one after the other. The proposed
model has a reasonable size and achieves competitive results with respect to
state-of-the-art while using a small training dataset. In particular, we reach
24.02% Concept Error Rate (CER) on MEDIA/test while training on MEDIA/train
without any additional data.
Related papers
- Split and Rephrase with Large Language Models [2.499907423888049]
Split and Rephrase (SPRP) task consists in splitting complex sentences into a sequence of shorter grammatical sentences.
We evaluate large language models on the task, showing that they can provide large improvements over the state of the art on the main metrics.
arXiv Detail & Related papers (2023-12-18T10:16:37Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
Existing machine translation (NMT) studies mainly focus on developing dataset-specific models.
We propose a versatile'' model, i.e., the Unified Model Learning for NMT (UMLNMT) that works with data from different tasks.
OurNMT results in substantial improvements over dataset-specific models with significantly reduced model deployment costs.
arXiv Detail & Related papers (2023-05-04T12:21:52Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Super-Prompting: Utilizing Model-Independent Contextual Data to Reduce
Data Annotation Required in Visual Commonsense Tasks [3.42658286826597]
We analyze different prompt-based fine-tuning techniques to improve results on both language and multimodal causal transformer models.
Our results show that by simple model-agnostic prompt-based fine-tuning, comparable results can be reached by only using 35%-40% of the fine-tuning training dataset.
arXiv Detail & Related papers (2022-04-25T18:56:55Z) - On the Use of External Data for Spoken Named Entity Recognition [40.93448412171246]
Recent advances in self-supervised speech representations have made it feasible to consider learning models with limited labeled data.
We draw on a variety of approaches, including self-training, knowledge distillation, and transfer learning, and consider their applicability to both end-to-end models and pipeline approaches.
arXiv Detail & Related papers (2021-12-14T18:49:26Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Paraphrastic Representations at Scale [134.41025103489224]
We release trained models for English, Arabic, German, French, Spanish, Russian, Turkish, and Chinese languages.
We train these models on large amounts of data, achieving significantly improved performance from the original papers.
arXiv Detail & Related papers (2021-04-30T16:55:28Z) - Efficiently Fusing Pretrained Acoustic and Linguistic Encoders for
Low-resource Speech Recognition [9.732767611907068]
In this work, we fuse a pre-trained acoustic encoder (wav2vec2.0) and a pre-trained linguistic encoder (BERT) into an end-to-end ASR model.
Our model achieves better recognition performance on CALLHOME corpus (15 hours) than other end-to-end models.
arXiv Detail & Related papers (2021-01-17T16:12:44Z) - Learning Better Sentence Representation with Syntax Information [0.0]
We propose a novel approach to combining syntax information with a pre-trained language model.
Our model achieves 91.2% accuracy, outperforming the baseline model by 37.8% on sentence completion task.
arXiv Detail & Related papers (2021-01-09T12:15:08Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.