The Unreasonable Effectiveness of Model Merging for Cross-Lingual Transfer in LLMs
- URL: http://arxiv.org/abs/2505.18356v1
- Date: Fri, 23 May 2025 20:28:31 GMT
- Title: The Unreasonable Effectiveness of Model Merging for Cross-Lingual Transfer in LLMs
- Authors: Lucas Bandarkar, Nanyun Peng,
- Abstract summary: Large language models (LLMs) still struggle across tasks outside of high-resource languages.<n>In this work, we investigate cross-lingual transfer to lower-resource languages where task-specific post-training data is scarce.
- Score: 54.59207567677249
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLMs) still struggle across tasks outside of high-resource languages. In this work, we investigate cross-lingual transfer to lower-resource languages where task-specific post-training data is scarce. Building on prior work, we first validate that the subsets of model parameters that matter most for mathematical reasoning and multilingual capabilities are distinctly non-overlapping. To exploit this implicit separability between task and target language parameterization, we develop and analyze numerous modular frameworks to improve the composition of the two during fine-tuning. These methods generally employ freezing parameters or post hoc model merging to assign math and language improvement to different key parts of the LLM. In the absence of in-language math data, we demonstrate that the modular approaches successfully improve upon baselines across three languages, four models, and two fine-tuning paradigms (full and LoRA). Furthermore, we identify the most consistently successful modular method to be fine-tuning separate language and math experts and model merging via Layer-Swapping, somewhat surprisingly. We offer possible explanations for this result via recent works on the linearity of task vectors. We further explain this by empirically showing that reverting less useful fine-tuning updates after training often outperforms freezing them from the start.
Related papers
- Multilingual Definition Modeling [1.9409995498330783]
We use monolingual dictionary data for four new languages (Spanish, French, Portuguese, and German)<n>We test the performance of pre-trained multilingual language models on definition modeling of monosemic words when finetuned on this data.<n>Results show that multilingual language models can perform on-pair with English but cannot leverage potential cross-lingual synergies.
arXiv Detail & Related papers (2025-06-02T09:48:37Z) - Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging [103.98582374569789]
Model merging aims to combine multiple expert models into a single model, thereby reducing storage and serving costs.<n>Previous studies have primarily focused on merging visual classification models or Large Language Models (LLMs) for code and math tasks.<n>We introduce the model merging benchmark for MLLMs, which includes multiple tasks such as VQA, Geometry, Chart, OCR, and Grounding, providing both LoRA and full fine-tuning models.
arXiv Detail & Related papers (2025-05-26T12:23:14Z) - Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models [12.424072830053445]
We present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages.<n>We fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language.<n>We replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language.
arXiv Detail & Related papers (2024-10-02T08:53:07Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - No Train but Gain: Language Arithmetic for training-free Language Adapters enhancement [59.37775534633868]
We introduce a novel method called language arithmetic, which enables training-free post-processing.
The effectiveness of the proposed solution is demonstrated on three downstream tasks in a MAD-X-based set of cross-lingual schemes.
arXiv Detail & Related papers (2024-04-24T08:52:40Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- Composition to Augment Language Models -- introduces cross-attention between models to compose their representations and enable new capabilities.
We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13% on tasks like translation into English.
When PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40% over the base model for code generation and explanation tasks.
arXiv Detail & Related papers (2024-01-04T18:53:01Z) - Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years.
We present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs.
Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task.
arXiv Detail & Related papers (2023-12-20T16:40:33Z) - MergeDistill: Merging Pre-trained Language Models using Distillation [5.396915402673246]
We propose MergeDistill, a framework to merge pre-trained LMs in a way that can best leverage their assets with minimal dependencies.
We demonstrate the applicability of our framework in a practical setting by leveraging pre-existing teacher LMs and training student LMs that perform competitively with or even outperform teacher LMs trained on several orders of magnitude more data and with a fixed model capacity.
arXiv Detail & Related papers (2021-06-05T08:22:05Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.