MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic
- URL: http://arxiv.org/abs/2002.05966v5
- Date: Tue, 23 Jun 2020 13:06:17 GMT
- Title: MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic
- Authors: Hao Cheng, Wentong Liao, Michael Ying Yang, Monika Sester, Bodo
Rosenhahn
- Abstract summary: Trajectory prediction in urban mixedtraffic zones is critical for many intelligent transportation systems.
We propose an approach named Multi-Context Network (MCENET) that is trained by encoding both past and future scene context.
In inference time, we combine the past context and motion information of the target agent with samplings of the latent variables to predict multiple realistic trajectories.
- Score: 35.22312783822563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction in urban mixed-traffic zones (a.k.a. shared spaces) is
critical for many intelligent transportation systems, such as intent detection
for autonomous driving. However, there are many challenges to predict the
trajectories of heterogeneous road agents (pedestrians, cyclists and vehicles)
at a microscopical level. For example, an agent might be able to choose
multiple plausible paths in complex interactions with other agents in varying
environments. To this end, we propose an approach named Multi-Context Encoder
Network (MCENET) that is trained by encoding both past and future scene
context, interaction context and motion information to capture the patterns and
variations of the future trajectories using a set of stochastic latent
variables. In inference time, we combine the past context and motion
information of the target agent with samplings of the latent variables to
predict multiple realistic trajectories in the future. Through experiments on
several datasets of varying scenes, our method outperforms some of the recent
state-of-the-art methods for mixed traffic trajectory prediction by a large
margin and more robust in a very challenging environment. The impact of each
context is justified via ablation studies.
Related papers
- A Hierarchical Hybrid Learning Framework for Multi-agent Trajectory
Prediction [4.181632607997678]
We propose a hierarchical hybrid framework of deep learning (DL) and reinforcement learning (RL) for multi-agent trajectory prediction.
In the DL stage, the traffic scene is divided into multiple intermediate-scale heterogenous graphs based on which Transformer-style GNNs are adopted to encode heterogenous interactions.
In the RL stage, we divide the traffic scene into local sub-scenes utilizing the key future points predicted in the DL stage.
arXiv Detail & Related papers (2023-03-22T02:47:42Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
Trajectory prediction has been a crucial task in building a reliable autonomous driving system by anticipating possible dangers.
We propose an efficient masked autoencoder for trajectory prediction (Traj-MAE) that better represents the complicated behaviors of agents in the driving environment.
Our experimental results in both multi-agent and single-agent settings demonstrate that Traj-MAE achieves competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-12T16:23:27Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [139.33800431159446]
LookOut is an approach to jointly perceive the environment and predict a diverse set of futures from sensor data.
We show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset.
arXiv Detail & Related papers (2021-01-16T23:19:22Z) - Multimodal Trajectory Prediction via Topological Invariance for
Navigation at Uncontrolled Intersections [45.508973373913946]
We focus on decentralized navigation among multiple non-communicating rational agents at street intersections without traffic signs or signals.
Our key insight is that the geometric structure of the intersection and the incentive of agents to move efficiently and avoid collisions (rationality) reduces the space of likely behaviors.
We design Multiple Topologies Prediction (MTP), a data-driven trajectory-prediction mechanism that reconstructs trajectory representations of high-likelihood modes in multiagent intersection scenes.
arXiv Detail & Related papers (2020-11-08T02:56:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Robust Trajectory Forecasting for Multiple Intelligent Agents in Dynamic
Scene [11.91073327154494]
We present a novel method for robust trajectory forecasting of multiple agents in dynamic scenes.
The proposed method outperforms the state-of-the-art prediction methods in terms of prediction accuracy.
arXiv Detail & Related papers (2020-05-27T02:32:55Z) - Diverse and Admissible Trajectory Forecasting through Multimodal Context
Understanding [46.52703817997932]
Multi-agent trajectory forecasting in autonomous driving requires an agent to accurately anticipate the behaviors of the surrounding vehicles and pedestrians.
We propose a model that synthesizes multiple input signals from the multimodal world.
We show a significant performance improvement over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-03-06T13:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.