Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers
- URL: http://arxiv.org/abs/2106.12442v1
- Date: Tue, 22 Jun 2021 15:40:21 GMT
- Title: Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers
- Authors: Apratim Bhattacharyya, Daniel Olmeda Reino, Mario Fritz, Bernt Schiele
- Abstract summary: We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
- Score: 126.81938540470847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of pedestrian and bicyclist paths is integral to the
development of reliable autonomous vehicles in dense urban environments. The
interactions between vehicle and pedestrian or bicyclist have a significant
impact on the trajectories of traffic participants e.g. stopping or turning to
avoid collisions. Although recent datasets and trajectory prediction approaches
have fostered the development of autonomous vehicles yet the amount of
vehicle-pedestrian (bicyclist) interactions modeled are sparse. In this work,
we propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories. In
particular, our dataset caters more diverse and complex interactions in dense
urban scenarios compared to the existing datasets. To address the challenges in
predicting future trajectories with dense interactions, we develop a joint
inference model that learns an expressive multi-modal shared latent space
across agents in the urban scene. This enables our Joint-$\beta$-cVAE approach
to better model the distribution of future trajectories. We achieve state of
the art results on the nuScenes and Euro-PVI datasets demonstrating the
importance of capturing interactions between ego-vehicle and pedestrians
(bicyclists) for accurate predictions.
Related papers
- Roundabout Dilemma Zone Data Mining and Forecasting with Trajectory Prediction and Graph Neural Networks [23.098974945647683]
This paper presents an automated system that leverages trajectory forecasting to predict DZ events, specifically at traffic roundabouts.
Our system aims to enhance safety standards in both autonomous and manual transportation.
arXiv Detail & Related papers (2024-09-01T05:47:58Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
arXiv Detail & Related papers (2021-12-13T13:08:04Z) - Predicting Vehicles Trajectories in Urban Scenarios with Transformer
Networks and Augmented Information [0.0]
This paper exploits simple structures for predicting pedestrian trajectories, based on Transformer Networks.
We adapt their use to the problem of vehicle trajectory prediction in urban scenarios in prediction horizons up to 5 seconds.
Our model achieves state-of-the-art results and proves to be flexible and adaptable to different types of urban contexts.
arXiv Detail & Related papers (2021-06-01T15:18:55Z) - Large Scale Interactive Motion Forecasting for Autonomous Driving : The
Waymo Open Motion Dataset [84.3946567650148]
With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways.
We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent.
We introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models.
arXiv Detail & Related papers (2021-04-20T17:19:05Z) - Multi-Modal Hybrid Architecture for Pedestrian Action Prediction [14.032334569498968]
We propose a novel multi-modal prediction algorithm that incorporates different sources of information captured from the environment to predict future crossing actions of pedestrians.
Using the existing 2D pedestrian behavior benchmarks and a newly annotated 3D driving dataset, we show that our proposed model achieves state-of-the-art performance in pedestrian crossing prediction.
arXiv Detail & Related papers (2020-11-16T15:17:58Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
Trajectory prediction in urban mixedtraffic zones is critical for many intelligent transportation systems.
We propose an approach named Multi-Context Network (MCENET) that is trained by encoding both past and future scene context.
In inference time, we combine the past context and motion information of the target agent with samplings of the latent variables to predict multiple realistic trajectories.
arXiv Detail & Related papers (2020-02-14T11:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.