Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions
- URL: http://arxiv.org/abs/2002.06212v3
- Date: Sun, 3 Oct 2021 13:43:25 GMT
- Title: Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions
- Authors: Minas Karamanis and Florian Beutler
- Abstract summary: Slice Sampling has emerged as a powerful Markov Chain Monte Carlo algorithm that adapts to the characteristics of the target distribution with minimal hand-tuning.
This paper introduces Ensemble Slice Sampling (ESS), a new class of algorithms that bypasses such difficulties by adaptively tuning the initial length scale.
These affine-invariant algorithms are trivial to construct, require no hand-tuning, and can easily be implemented in parallel computing environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Slice Sampling has emerged as a powerful Markov Chain Monte Carlo algorithm
that adapts to the characteristics of the target distribution with minimal
hand-tuning. However, Slice Sampling's performance is highly sensitive to the
user-specified initial length scale hyperparameter and the method generally
struggles with poorly scaled or strongly correlated distributions. This paper
introduces Ensemble Slice Sampling (ESS), a new class of algorithms that
bypasses such difficulties by adaptively tuning the initial length scale and
utilising an ensemble of parallel walkers in order to efficiently handle strong
correlations between parameters. These affine-invariant algorithms are trivial
to construct, require no hand-tuning, and can easily be implemented in parallel
computing environments. Empirical tests show that Ensemble Slice Sampling can
improve efficiency by more than an order of magnitude compared to conventional
MCMC methods on a broad range of highly correlated target distributions. In
cases of strongly multimodal target distributions, Ensemble Slice Sampling can
sample efficiently even in high dimensions. We argue that the parallel,
black-box and gradient-free nature of the method renders it ideal for use in
scientific fields such as physics, astrophysics and cosmology which are
dominated by a wide variety of computationally expensive and non-differentiable
models.
Related papers
- Shuffled Linear Regression via Spectral Matching [6.24954299842136]
Shuffled linear regression seeks to estimate latent features through a linear transformation.
This problem extends traditional least-squares (LS) and Least Absolute Shrinkage and Selection Operator (LASSO) approaches.
We propose a spectral matching method that efficiently resolves permutations.
arXiv Detail & Related papers (2024-09-30T16:26:40Z) - Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
Proximal samplers (SPS) for sampling from non-log-concave distributions are studied.
We show that the convergence to the target distribution can be guaranteed as long as the algorithm trajectory is bounded.
We provide two implementable variants based on Langevin dynamics (SGLD) and Langevin-MALA, giving rise to SPS-SGLD and SPS-MALA.
arXiv Detail & Related papers (2024-05-27T00:53:18Z) - Sample-Efficient Clustering and Conquer Procedures for Parallel
Large-Scale Ranking and Selection [0.0]
In parallel computing environments, correlation-based clustering can achieve an $mathcalO(p)$ sample complexity reduction rate.
In large-scale AI applications such as neural architecture search, a screening-free version of our procedure surprisingly surpasses fully-sequential benchmarks in terms of sample efficiency.
arXiv Detail & Related papers (2024-02-03T15:56:03Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Improving Gradient-guided Nested Sampling for Posterior Inference [47.08481529384556]
We present a performant, general-purpose gradient-guided nested sampling algorithm, $tt GGNS$.
We show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution.
arXiv Detail & Related papers (2023-12-06T21:09:18Z) - Arithmetic Sampling: Parallel Diverse Decoding for Large Language Models [65.52639709094963]
Methods such as beam search and Gumbel top-k sampling can guarantee a different output for each element of the beam, but are not easy to parallelize.
We present a framework for sampling according to an arithmetic code book implicitly defined by a large language model.
arXiv Detail & Related papers (2022-10-18T22:19:41Z) - Tuning Stochastic Gradient Algorithms for Statistical Inference via
Large-Sample Asymptotics [18.93569692490218]
tuning of gradient algorithms often based on trial-and-error rather than generalizable theory.
We show that averaging with a large fixed step size is robust to the choice of tuning parameters.
We lay the foundation for a systematic analysis of other gradient Monte Carlo algorithms.
arXiv Detail & Related papers (2022-07-25T17:58:09Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.