Improving Gradient-guided Nested Sampling for Posterior Inference
- URL: http://arxiv.org/abs/2312.03911v1
- Date: Wed, 6 Dec 2023 21:09:18 GMT
- Title: Improving Gradient-guided Nested Sampling for Posterior Inference
- Authors: Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar
Hezaveh, Laurence Perreault-Levasseur
- Abstract summary: We present a performant, general-purpose gradient-guided nested sampling algorithm, $tt GGNS$.
We show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution.
- Score: 47.08481529384556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a performant, general-purpose gradient-guided nested sampling
algorithm, ${\tt GGNS}$, combining the state of the art in differentiable
programming, Hamiltonian slice sampling, clustering, mode separation, dynamic
nested sampling, and parallelization. This unique combination allows ${\tt
GGNS}$ to scale well with dimensionality and perform competitively on a variety
of synthetic and real-world problems. We also show the potential of combining
nested sampling with generative flow networks to obtain large amounts of
high-quality samples from the posterior distribution. This combination leads to
faster mode discovery and more accurate estimates of the partition function.
Related papers
- Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel [10.840582511203024]
We show that our algorithm can be parallelized to run in only $widetilde O(log2 d)$ parallel rounds.
We also show that our algorithm can be parallelized to run in only $widetilde O(log2 d)$ parallel rounds.
arXiv Detail & Related papers (2024-06-03T01:34:34Z) - Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
Proximal samplers (SPS) for sampling from non-log-concave distributions are studied.
We show that the convergence to the target distribution can be guaranteed as long as the algorithm trajectory is bounded.
We provide two implementable variants based on Langevin dynamics (SGLD) and Langevin-MALA, giving rise to SPS-SGLD and SPS-MALA.
arXiv Detail & Related papers (2024-05-27T00:53:18Z) - Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time Complexity [11.71206628091551]
Diffusion models are costly to train and evaluate, reducing the inference cost for diffusion models remains a major goal.
Inspired by the recent empirical success in accelerating diffusion models via the parallel sampling techniqueciteshih2024parallel, we propose to divide the sampling process into $mathcalO(1)$ blocks with parallelizable Picard iterations within each block.
Our results shed light on the potential of fast and efficient sampling of high-dimensional data on fast-evolving modern large-memory GPU clusters.
arXiv Detail & Related papers (2024-05-24T23:59:41Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Calibrate and Debias Layer-wise Sampling for Graph Convolutional
Networks [39.56471534442315]
This paper revisits the approach from a matrix approximation perspective.
We propose a new principle for constructing sampling probabilities and an efficient debiasing algorithm.
Improvements are demonstrated by extensive analyses of estimation variance and experiments on common benchmarks.
arXiv Detail & Related papers (2022-06-01T15:52:06Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
We introduce a new scalable approximation for Gaussian processes with provable guarantees which hold simultaneously over its entire parameter space.
Our approximation is obtained from an improved sample complexity analysis for sparse spectrum Gaussian processes (SSGPs)
arXiv Detail & Related papers (2020-11-17T05:41:50Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z) - Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions [0.0]
Slice Sampling has emerged as a powerful Markov Chain Monte Carlo algorithm that adapts to the characteristics of the target distribution with minimal hand-tuning.
This paper introduces Ensemble Slice Sampling (ESS), a new class of algorithms that bypasses such difficulties by adaptively tuning the initial length scale.
These affine-invariant algorithms are trivial to construct, require no hand-tuning, and can easily be implemented in parallel computing environments.
arXiv Detail & Related papers (2020-02-14T19:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.