Manifold-based Test Generation for Image Classifiers
- URL: http://arxiv.org/abs/2002.06337v1
- Date: Sat, 15 Feb 2020 07:53:34 GMT
- Title: Manifold-based Test Generation for Image Classifiers
- Authors: Taejoon Byun, Abhishek Vijayakumar, Sanjai Rayadurgam, Darren Cofer
- Abstract summary: To test an image classification neural network, one must obtain realistic test data adequate enough to inspire confidence.
This paper proposes a novel framework to address these challenges.
Experiments show that this approach enables generation of thousands of realistic yet fault-revealing test cases efficiently even for well-trained models.
- Score: 7.226144684379191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks used for image classification tasks in critical applications
must be tested with sufficient realistic data to assure their correctness. To
effectively test an image classification neural network, one must obtain
realistic test data adequate enough to inspire confidence that differences
between the implicit requirements and the learned model would be exposed. This
raises two challenges: first, an adequate subset of the data points must be
carefully chosen to inspire confidence, and second, the implicit requirements
must be meaningfully extrapolated to data points beyond those in the explicit
training set. This paper proposes a novel framework to address these
challenges. Our approach is based on the premise that patterns in a large input
data space can be effectively captured in a smaller manifold space, from which
similar yet novel test cases---both the input and the label---can be sampled
and generated. A variant of Conditional Variational Autoencoder (CVAE) is used
for capturing this manifold with a generative function, and a search technique
is applied on this manifold space to efficiently find fault-revealing inputs.
Experiments show that this approach enables generation of thousands of
realistic yet fault-revealing test cases efficiently even for well-trained
models.
Related papers
- Rejection Sampling IMLE: Designing Priors for Better Few-Shot Image
Synthesis [7.234618871984921]
An emerging area of research aims to learn deep generative models with limited training data.
We propose RS-IMLE, a novel approach that changes the prior distribution used for training.
This leads to substantially higher quality image generation compared to existing GAN and IMLE-based methods.
arXiv Detail & Related papers (2024-09-26T00:19:42Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Importance of Disjoint Sampling in Conventional and Transformer Models for Hyperspectral Image Classification [2.1223532600703385]
This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks.
By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.
This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.
arXiv Detail & Related papers (2024-04-23T11:40:52Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - Parameter-free Online Test-time Adaptation [19.279048049267388]
We show how test-time adaptation methods fare for a number of pre-trained models on a variety of real-world scenarios.
We propose a particularly "conservative" approach, which addresses the problem with a Laplacian Adjusted Maximum Estimation (LAME)
Our approach exhibits a much higher average accuracy across scenarios than existing methods, while being notably faster and have a much lower memory footprint.
arXiv Detail & Related papers (2022-01-15T00:29:16Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.