Importance of Disjoint Sampling in Conventional and Transformer Models for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2404.14944v1
- Date: Tue, 23 Apr 2024 11:40:52 GMT
- Title: Importance of Disjoint Sampling in Conventional and Transformer Models for Hyperspectral Image Classification
- Authors: Muhammad Ahmad, Manuel Mazzara, Salvatore Distifano,
- Abstract summary: This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks.
By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.
This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.
- Score: 2.1223532600703385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art (SOTA) models. When training, validation, and test sets overlap or share data, it introduces a bias that inflates performance metrics and prevents accurate assessment of a model's true ability to generalize to new examples. This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks. By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation. Experiments demonstrate the approach significantly improves a model's generalization compared to alternatives that include training and validation data in test data. By eliminating data leakage between sets, disjoint sampling provides reliable metrics for benchmarking progress in HSIC. Researchers can have confidence that reported performance truly reflects a model's capabilities for classifying new scenes, not just memorized pixels. This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors. The source code is available at https://github.com/mahmad00/Disjoint-Sampling-for-Hyperspectral-Image-Classification.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Adversarial Augmentation Training Makes Action Recognition Models More
Robust to Realistic Video Distribution Shifts [13.752169303624147]
Action recognition models often lack robustness when faced with natural distribution shifts between training and test data.
We propose two novel evaluation methods to assess model resilience to such distribution disparity.
We experimentally demonstrate the superior performance of the proposed adversarial augmentation approach over baselines across three state-of-the-art action recognition models.
arXiv Detail & Related papers (2024-01-21T05:50:39Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - AI in the Loop -- Functionalizing Fold Performance Disagreement to
Monitor Automated Medical Image Segmentation Pipelines [0.0]
Methods for automatically flag poor performing-predictions are essential for safely implementing machine learning into clinical practice.
We present a readily adoptable method using sub-models trained on different dataset folds, where their disagreement serves as a surrogate for model confidence.
arXiv Detail & Related papers (2023-05-15T21:35:23Z) - Zero-shot Model Diagnosis [80.36063332820568]
A common approach to evaluate deep learning models is to build a labeled test set with attributes of interest and assess how well it performs.
This paper argues the case that Zero-shot Model Diagnosis (ZOOM) is possible without the need for a test set nor labeling.
arXiv Detail & Related papers (2023-03-27T17:59:33Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
"Effective robustness" measures the extra out-of-distribution robustness beyond what can be predicted from the in-distribution (ID) performance.
We propose a new evaluation metric to evaluate and compare the effective robustness of models trained on different data.
arXiv Detail & Related papers (2023-02-02T19:28:41Z) - Boosting Out-of-Distribution Detection with Multiple Pre-trained Models [41.66566916581451]
Post hoc detection utilizing pre-trained models has shown promising performance and can be scaled to large-scale problems.
We propose a detection enhancement method by ensembling multiple detection decisions derived from a zoo of pre-trained models.
Our method substantially improves the relative performance by 65.40% and 26.96% on the CIFAR10 and ImageNet benchmarks.
arXiv Detail & Related papers (2022-12-24T12:11:38Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Model Rectification via Unknown Unknowns Extraction from Deployment
Samples [8.0497115494227]
We propose a general algorithmic framework that aims to perform a post-training model rectification at deployment time in a supervised way.
RTSCV extracts unknown unknowns (u.u.s)
We show that RTSCV consistently outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2021-02-08T11:46:19Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - A Zero-Shot based Fingerprint Presentation Attack Detection System [8.676298469169174]
We propose a novel Zero-Shot Presentation Attack Detection Model to guarantee the generalization of the PAD model.
The proposed ZSPAD-Model based on generative model does not utilize any negative samples in the process of establishment.
In order to improve the performance of the proposed model, 9 confidence scores are discussed in this article.
arXiv Detail & Related papers (2020-02-12T10:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.