論文の概要: Federated Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2002.06352v5
- Date: Wed, 6 Jul 2022 09:46:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 23:19:29.468163
- Title: Federated Neural Architecture Search
- Title(参考訳): フェデレーションニューラルアーキテクチャ探索
- Authors: Jinliang Yuan, Mengwei Xu, Yuxin Zhao, Kaigui Bian, Gang Huang,
Xuanzhe Liu and Shangguang Wang
- Abstract要約: 我々は、フェデレートニューラルアーキテクチャサーチと呼ばれる新しいDNNトレーニングパラダイムとして、分散トレーニングへの自動ニューラルアーキテクチャサーチを提案する。
我々は、効率的なフェデレーションNASのための高度に最適化されたフレームワークであるFedNASを提案する。
大規模なデータセットと典型的なCNNアーキテクチャでテストされたFedNASは、最先端NASアルゴリズムと同等のモデル精度を達成している。
- 参考スコア(独自算出の注目度): 19.573780215917477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To preserve user privacy while enabling mobile intelligence, techniques have
been proposed to train deep neural networks on decentralized data. However,
training over decentralized data makes the design of neural architecture quite
difficult as it already was. Such difficulty is further amplified when
designing and deploying different neural architectures for heterogeneous mobile
platforms. In this work, we propose an automatic neural architecture search
into the decentralized training, as a new DNN training paradigm called
Federated Neural Architecture Search, namely federated NAS. To deal with the
primary challenge of limited on-client computational and communication
resources, we present FedNAS, a highly optimized framework for efficient
federated NAS. FedNAS fully exploits the key opportunity of insufficient model
candidate re-training during the architecture search process, and incorporates
three key optimizations: parallel candidates training on partial clients, early
dropping candidates with inferior performance, and dynamic round numbers.
Tested on large-scale datasets and typical CNN architectures, FedNAS achieves
comparable model accuracy as state-of-the-art NAS algorithm that trains models
with centralized data, and also reduces the client cost by up to two orders of
magnitude compared to a straightforward design of federated NAS.
- Abstract(参考訳): モバイルインテリジェンスを有効にしながらユーザのプライバシを保護するため、分散データ上でディープニューラルネットワークをトレーニングするテクニックが提案されている。
しかし、分散データによるトレーニングは、ニューラルネットワークの設計を以前と同じように非常に難しくする。
このような難しさは、異種モバイルプラットフォーム向けの異なるニューラルアーキテクチャの設計とデプロイにおいてさらに増幅される。
本研究では,連合型ニューラルネットワーク探索と呼ばれる新しいdnnトレーニングパラダイムであるフェデレーションnasとして,分散トレーニングへの自動ニューラルアーキテクチャ探索を提案する。
オンクライアントの計算リソースと通信リソースを制限するという課題に対処するため,我々は,効率のよいフェデレーションnasのための高度に最適化されたフレームワークであるfeednasを提案する。
fednasは、アーキテクチャ検索プロセス中にモデル候補の再トレーニングが不十分な重要な機会をフル活用し、部分クライアントでの並列候補トレーニング、パフォーマンスが劣る早期ドロップ候補、動的ラウンド番号の3つの重要な最適化を取り入れている。
大規模なデータセットと典型的なCNNアーキテクチャでテストされたFedNASは、集中型データでモデルをトレーニングする最先端NASアルゴリズムと同等のモデル精度を実現し、フェデレートNASの単純な設計に比べて、クライアントコストを最大2桁削減する。
関連論文リスト
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
ニューラルアーキテクチャサーチ(NAS)により、リサーチ者は広大なサーチスペースを自動的に探索し、効率的なニューラルネットワークを見つけることができる。
NASは重要なボトルネックに悩まされており、探索プロセス中に多くのアーキテクチャを評価する必要がある。
SMEM-NASは,多集団構造に基づく多目的進化アルゴリズムである。
論文 参考訳(メタデータ) (2024-07-22T12:46:22Z) - Fair Differentiable Neural Network Architecture Search for Long-Tailed Data with Self-Supervised Learning [0.0]
本稿では,NASの長期化データセットにおける探索・訓練性能の向上について検討する。
まず、NASに関する関連する研究と、長い尾を持つデータセットに対するディープラーニング手法について論じる。
次に、自己教師付き学習と公正な差別化可能なNASを統合したSSF-NASと呼ばれる既存の研究に焦点を当てる。
最後に,性能評価のためのCIFAR10-LTデータセットについて実験を行った。
論文 参考訳(メタデータ) (2024-06-19T12:39:02Z) - DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
バイナリ重みとアクティベーションを備えた1ビット畳み込みニューラルネットワーク(CNN)は、リソース制限された組み込みデバイスの可能性を示している。
自然なアプローチの1つは、NASの計算とメモリコストを削減するために1ビットCNNを使用することである。
本稿では,1ビットCNNを効率的に探索するためにDCP-NAS(Disrepant Child-Parent Neural Architecture Search)を提案する。
論文 参考訳(メタデータ) (2023-06-27T11:28:29Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
ニューラルネットワーク探索(NAS)の一般化特性を統一的枠組みの下で検討する。
我々は, 有限幅政権下でのニューラル・タンジェント・カーネル(NTK)の最小固有値の下(および上)境界を導出する。
トレーニングなしでもNASがトップパフォーマンスアーキテクチャを選択する方法を示す。
論文 参考訳(メタデータ) (2022-09-15T12:11:41Z) - NASRec: Weight Sharing Neural Architecture Search for Recommender
Systems [40.54254555949057]
NASRecは,1つのスーパーネットをトレーニングし,重量共有により豊富なモデル/サブアーキテクチャを効率的に生成するパラダイムである。
CTR(Click-Through Rates)の3つの予測ベンチマークの結果,NASRecは手動設計モデルと既存のNAS手法の両方より優れていることが示された。
論文 参考訳(メタデータ) (2022-07-14T20:15:11Z) - BossNAS: Exploring Hybrid CNN-transformers with Block-wisely
Self-supervised Neural Architecture Search [100.28980854978768]
BossNAS(Block-wisely Self-supervised Neural Architecture Search)の紹介
探索空間をブロックに分類し、アンサンブルブートストラッピングと呼ばれる新しい自己教師型トレーニングスキームを用いて各ブロックを個別に訓練する。
また,検索可能なダウンサンプリング位置を持つファブリック型cnnトランスフォーマ検索空間であるhytra search spaceを提案する。
論文 参考訳(メタデータ) (2021-03-23T10:05:58Z) - Neural Architecture Search on ImageNet in Four GPU Hours: A
Theoretically Inspired Perspective [88.39981851247727]
トレーニングフリーニューラルアーキテクチャサーチ(TE-NAS)という新しいフレームワークを提案する。
TE-NASは、ニューラルネットワークカーネル(NTK)のスペクトルと入力空間内の線形領域の数を分析することによってアーキテクチャをランク付けする。
1) この2つの測定はニューラルネットワークのトレーサビリティと表現性を示し, (2) ネットワークのテスト精度と強く相関することを示した。
論文 参考訳(メタデータ) (2021-02-23T07:50:44Z) - FDNAS: Improving Data Privacy and Model Diversity in AutoML [7.402044070683503]
クライアントの分散データからハードウェアを意識したNASを実現するためのFDNAS(Federated Direct Neural Architecture Search)フレームワークを提案する。
メタラーニングにインスパイアされたクライアントのデータ分散をさらに適応させるために、CFDNAS(Federated Direct Neural Architecture Search)フレームワークが提案され、クライアント対応NASを実現する。
論文 参考訳(メタデータ) (2020-11-06T14:13:42Z) - Direct Federated Neural Architecture Search [0.0]
本稿では,ハードウェアに依存せず,計算的に軽量な直接フェデレーションNASと,準備の整ったニューラルネットワークモデルを探すためのワンステージ手法を提案する。
以上の結果から, 従来技術の精度向上を図りながら, 資源消費の大幅な削減を図った。
論文 参考訳(メタデータ) (2020-10-13T08:11:35Z) - Towards Non-I.I.D. and Invisible Data with FedNAS: Federated Deep
Learning via Neural Architecture Search [15.714385295889944]
本稿では,より高精度なアーキテクチャの探索を支援するために,フェデレートNAS(FedNAS)アルゴリズムを提案する。
非IIDデータセットに対する実験により、FedNASが検索したアーキテクチャは、手動で定義したアーキテクチャよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-04-18T08:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。