Federated Learning with Matched Averaging
- URL: http://arxiv.org/abs/2002.06440v1
- Date: Sat, 15 Feb 2020 20:09:24 GMT
- Title: Federated Learning with Matched Averaging
- Authors: Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos,
Yasaman Khazaeni
- Abstract summary: Federated learning allows edge devices to collaboratively learn a shared model while keeping the training data on device.
We propose Federated matched averaging (FedMA) algorithm designed for federated learning of modern neural network architectures.
- Score: 43.509797844077426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning allows edge devices to collaboratively learn a shared
model while keeping the training data on device, decoupling the ability to do
model training from the need to store the data in the cloud. We propose
Federated matched averaging (FedMA) algorithm designed for federated learning
of modern neural network architectures e.g. convolutional neural networks
(CNNs) and LSTMs. FedMA constructs the shared global model in a layer-wise
manner by matching and averaging hidden elements (i.e. channels for convolution
layers; hidden states for LSTM; neurons for fully connected layers) with
similar feature extraction signatures. Our experiments indicate that FedMA not
only outperforms popular state-of-the-art federated learning algorithms on deep
CNN and LSTM architectures trained on real world datasets, but also reduces the
overall communication burden.
Related papers
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Toward efficient resource utilization at edge nodes in federated learning [0.6990493129893112]
Federated learning enables edge nodes to collaboratively contribute to constructing a global model without sharing their data.
computational resource constraints and network communication can become a severe bottleneck for larger model sizes typical for deep learning applications.
We propose and evaluate a FL strategy inspired by transfer learning in order to reduce resource utilization on devices.
arXiv Detail & Related papers (2023-09-19T07:04:50Z) - FedPNN: One-shot Federated Classification via Evolving Clustering Method
and Probabilistic Neural Network hybrid [4.241208172557663]
We propose a two-stage federated learning approach toward the objective of privacy protection.
In the first stage, the synthetic dataset is generated by employing two different distributions as noise.
In the second stage, the Federated Probabilistic Neural Network (FedPNN) is developed and employed for building globally shared classification model.
arXiv Detail & Related papers (2023-04-09T03:23:37Z) - FedIN: Federated Intermediate Layers Learning for Model Heterogeneity [7.781409257429762]
Federated learning (FL) facilitates edge devices to cooperatively train a global shared model while maintaining the training data locally and privately.
In this study, we propose an FL method called Federated Intermediate Layers Learning (FedIN), supporting heterogeneous models without relying on any public dataset.
Experiment results demonstrate the superior performance of FedIN in heterogeneous model environments compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2023-04-03T07:20:43Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - FedDKD: Federated Learning with Decentralized Knowledge Distillation [3.9084449541022055]
We propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD)
We show that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps.
arXiv Detail & Related papers (2022-05-02T07:54:07Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Probabilistic Federated Learning of Neural Networks Incorporated with
Global Posterior Information [4.067903810030317]
In federated learning, models trained on local clients are distilled into a global model.
We propose a new method which extends the Probabilistic Federated Neural Matching.
Our new method outperforms popular state-of-the-art federated learning methods in both single communication round and additional communication rounds situation.
arXiv Detail & Related papers (2020-12-06T03:54:58Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
Federated learning has emerged as a technique for training ML models at the network edge by leveraging processing capabilities across the nodes that collect the data.
We advocate a new learning paradigm called fog learning which will intelligently distribute ML model training across the continuum of nodes from edge devices to cloud servers.
arXiv Detail & Related papers (2020-06-07T05:11:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.