FedDKD: Federated Learning with Decentralized Knowledge Distillation
- URL: http://arxiv.org/abs/2205.00706v1
- Date: Mon, 2 May 2022 07:54:07 GMT
- Title: FedDKD: Federated Learning with Decentralized Knowledge Distillation
- Authors: Xinjia Li, Boyu Chen and Wenlian Lu
- Abstract summary: We propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD)
We show that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps.
- Score: 3.9084449541022055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of federated learning in neural networks is generally
influenced by the heterogeneity of the data distribution. For a well-performing
global model, taking a weighted average of the local models, as done by most
existing federated learning algorithms, may not guarantee consistency with
local models in the space of neural network maps. In this paper, we propose a
novel framework of federated learning equipped with the process of
decentralized knowledge distillation (FedDKD) (i.e., without data on the
server). The FedDKD introduces a module of decentralized knowledge distillation
(DKD) to distill the knowledge of the local models to train the global model by
approaching the neural network map average based on the metric of divergence
defined in the loss function, other than only averaging parameters as done in
literature. Numeric experiments on various heterogeneous datasets reveal that
FedDKD outperforms the state-of-the-art methods with more efficient
communication and training in a few DKD steps, especially on some extremely
heterogeneous datasets.
Related papers
- NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel [27.92271597111756]
Decentralized federated learning (DFL) is a collaborative machine learning framework for training a model across participants without a central server or raw data exchange.
Recent work has shown that the neural tangent kernel (NTK) approach, when applied to federated learning in a centralized framework, can lead to improved performance.
We propose an approach leveraging the NTK to train client models in the decentralized setting, while introducing a synergy between NTK-based evolution and model averaging.
arXiv Detail & Related papers (2024-10-02T18:19:28Z) - Proximity-based Self-Federated Learning [1.0066310107046081]
This paper introduces a novel, fully-distributed federated learning strategy called proximity-based self-federated learning.
Unlike traditional algorithms, our approach encourages clients to share and adjust their models with neighbouring nodes based on geographic proximity and model accuracy.
arXiv Detail & Related papers (2024-07-17T08:44:45Z) - Impact of network topology on the performance of Decentralized Federated
Learning [4.618221836001186]
Decentralized machine learning is gaining momentum, addressing infrastructure challenges and privacy concerns.
This study investigates the interplay between network structure and learning performance using three network topologies and six data distribution methods.
We highlight the challenges in transferring knowledge from peripheral to central nodes, attributed to a dilution effect during model aggregation.
arXiv Detail & Related papers (2024-02-28T11:13:53Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data [14.386062807300666]
In this paper, we focus on designing a decentralized learning algorithm that is less susceptible to variations in data distribution across devices.
We propose Global Update Tracking (GUT), a novel tracking-based method that aims to mitigate the impact of heterogeneous data in decentralized learning without introducing any communication overhead.
Our experiments show that the proposed method achieves state-of-the-art performance for decentralized learning on heterogeneous data via a $1-6%$ improvement in test accuracy compared to other existing techniques.
arXiv Detail & Related papers (2023-05-08T15:48:53Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
Decentralized federated learning (DFL) is a problem in the Internet of things (IoT) systems.
We propose a mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other.
Our experiments on the MNIST, Fashion-MNIST, and CIFAR10 datasets reveal datasets that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods.
arXiv Detail & Related papers (2020-12-24T01:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.