論文の概要: Distributed Sketching Methods for Privacy Preserving Regression
- arxiv url: http://arxiv.org/abs/2002.06538v2
- Date: Sat, 20 Jun 2020 00:36:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 18:24:58.716915
- Title: Distributed Sketching Methods for Privacy Preserving Regression
- Title(参考訳): プライバシー保護レグレッションのための分散スケッチ手法
- Authors: Burak Bartan, Mert Pilanci
- Abstract要約: ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
従来のスケッチ手法に対する新しい近似保証を導出し、分散スケッチにおけるパラメータ平均化の精度を解析する。
大規模実験によるサーバレスコンピューティングプラットフォームにおける分散スケッチのパフォーマンスについて説明する。
- 参考スコア(独自算出の注目度): 54.51566432934556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study distributed sketching methods for large scale
regression problems. We leverage multiple randomized sketches for reducing the
problem dimensions as well as preserving privacy and improving straggler
resilience in asynchronous distributed systems. We derive novel approximation
guarantees for classical sketching methods and analyze the accuracy of
parameter averaging for distributed sketches. We consider random matrices
including Gaussian, randomized Hadamard, uniform sampling and leverage score
sampling in the distributed setting. Moreover, we propose a hybrid approach
combining sampling and fast random projections for better computational
efficiency. We illustrate the performance of distributed sketches in a
serverless computing platform with large scale experiments.
- Abstract(参考訳): 本研究では,大規模回帰問題に対する分散スケッチ手法について検討する。
我々は、複数のランダム化されたスケッチを活用し、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
従来のスケッチ手法に対する新しい近似保証を導出し、分散スケッチにおけるパラメータ平均化の精度を解析する。
本稿では, ガウス, ランダム化アダマール, 均一サンプリング, 分散環境でのスコアサンプリングなど, ランダム行列について考察する。
さらに,サンプリングと高速なランダムプロジェクションを組み合わせたハイブリッド手法を提案し,計算効率を向上する。
大規模実験によるサーバレスコンピューティングプラットフォームにおける分散スケッチのパフォーマンスについて説明する。
関連論文リスト
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Gradient Coding with Iterative Block Leverage Score Sampling [42.21200677508463]
変換したデータのサンプリングサブセットに対応するために,$ell$-subspace埋め込みのためのレバレッジスコアサンプリングスケッチを一般化する。
これを用いて、一階法に対する近似符号付き計算手法を導出する。
論文 参考訳(メタデータ) (2023-08-06T12:22:12Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) が提案されている。
提案アルゴリズムは,文脈的帯域幅の特別な場合において,最高のトンプソンサンプリングアルゴリズムと同じサブ線形残差を達成できることを示す。
論文 参考訳(メタデータ) (2022-06-22T17:58:23Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Accumulations of Projections--A Unified Framework for Random Sketches in
Kernel Ridge Regression [12.258887270632869]
n-by-n 経験的カーネル行列のスケッチを構築することは、多くのカーネルメソッドの計算を加速するための一般的なアプローチである。
カーネルリッジ回帰におけるスケッチ手法を構築するための統一フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-06T05:02:17Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Fitting Laplacian Regularized Stratified Gaussian Models [0.0]
データから複数の関連するゼロ平均ガウス分布を共同推定する問題を考察する。
本稿では,大規模な問題にスケールする分散手法を提案するとともに,金融,レーダ信号処理,天気予報などの手法の有効性について述べる。
論文 参考訳(メタデータ) (2020-05-04T18:00:59Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。